Mostrar el registro sencillo del ítem

dc.creatorFlorez E.spa
dc.creatorAcelas N.spa
dc.creatorRamírez F.spa
dc.creatorHadad C.spa
dc.creatorRestrepo A.spa
dc.date.accessioned2018-10-31T13:44:21Z
dc.date.available2018-10-31T13:44:21Z
dc.date.created2018
dc.identifier.issn14639076
dc.identifier.urihttp://hdl.handle.net/11407/4880
dc.descriptionA staggering structural diversity for the microsolvation of F- with up to six water molecules is uncovered in this work. Given the structural variety and the proximity in energy among several local minima, we show here that in order to match available experimental data, statistical averages over contributing structures are needed, rather than assigning experimental values to isolated structures. Our results suggest that the formal charge in F- is strong enough as to induce partial and total dissociation of water molecules and to alter the nature of the surrounding network of water to water hydrogen bonds. We provide an extensive analysis of bonding interactions under the NBO and QTAIM formalisms, our main results suggest a complex interplay between ionic and covalent characters for the F?H interactions as a function of the separation between the atoms. © 2018 the Owner Societies.spa
dc.language.isoeng
dc.publisherRoyal Society of Chemistryspa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85044830908&doi=10.1039%2fc8cp00819a&partnerID=40&md5=52959a663f6308fd23d908e0a671c159spa
dc.sourceScopusspa
dc.titleMicrosolvation of F-spa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicasspa
dc.contributor.affiliationFlorez, E., Universidad de Medellín;Acelas, N., Universidad de Medellín;Ramírez, F., Universidad de Antioquia;Hadad, C., Universidad de Antioquia;Restrepo, A., Universidad de Antioquiaspa
dc.identifier.doi10.1039/c8cp00819a
dc.relation.citationvolume20
dc.relation.citationissue13
dc.relation.citationstartpage8909
dc.relation.citationendpage8916
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.relation.ispartofesPhysical Chemistry Chemical Physicsspa
dc.relation.referencesMarcus, Y., Effect of ions on the structure of water: Structure making and breaking (2009) Chem. Rev., 109, pp. 1346-1370;Becucci, M., Melandri, S., High-Resolution Spectroscopic Studies of Complexes Formed by Medium-Size Organic Molecules (2016) Chem. Rev., 116, p. 5014;Mahadevi, A.S., Sastry, G.N., Cooperativity in Noncovalent Interactions (2016) Chem. Rev., 116, p. 2775;Gadre, S., Yeole, S.D., Sahu, N., Quantum Chemical Investigations on Molecular Clusters (2014) Chem. Rev., 114, p. 12132;Yang, X., Wang, X.B., Wang, L.S., Photodetachment of F-(H2O)n (n = 1-4): Observation of charge-transfer states [F-(H2O)n +] and the transition state of F + H2O hydrogen abstraction reaction (2001) J. Chem. Phys., 115, p. 2889;Kim, J., Lee, H.M., Suh, S.B., Majumdar, D., Kim, K.S., Comparative ab initio study of the structures, energetics and spectra of X-?(H2O)n=1-4 [X = F, Cl, Br, I] clusters (2000) J. Chem. Phys., 113, p. 5259;Boisson, J., Stirnemann, G., Laage, D., Hynes, J.T., Water reorientation dynamics in the first hydration shells of F- and I- (2011) Phys. Chem. Chem. Phys., 13, p. 19895;Kebarle, P., Arshadi, M., Scarborough, J., Hydration of negative ions in the gas phase (1968) J. Chem. Phys., 49, pp. 817-822;Kebarle, P., Arshadi, M., Scarborough, J., Comparison of individual hydration energies for positive and negative ions on the basis of gas-phase hydration experiments (1969) J. Chem. Phys., 50, pp. 1049-1050;Verwey, E.J.W., The interaction of ion and solvent in aqueous solutions of electrolytes (1942) Recl. Trav. Chim. Pays-Bas, 61, pp. 127-142;Rosseinsky, D.R., Electrode potentials and hydration energies. Theories and correlations (1965) Chem. Rev., 65, pp. 467-490;Buckingham, A.D., A theory of ion-solvent interaction (1957) Discuss. Faraday Soc., 24, pp. 151-157;Vaslow, F., The orientation of water molecules in the field of an alkali ion (1963) J. Phys. Chem., 67, pp. 2773-2776;Chang, T.-M., Dang, L.X., Recent advances in molecular simulations of ion solvation at liquid interfaces (2006) Chem. Rev., 106, pp. 1305-1322;Molina, J.J., Lectez, S., Tazi, S., Salanne, M., Dufrêche, J.-F., Roques, J., Simoni, E., Turq, P., Ions in solutions: Determining their polarizabilities from first-principles (2011) J. Chem. Phys., 134, p. 014511;Omta, A.W., Kropman, M.F., Woutersen, S., Bakker, H.J., Negligible effect of ions on the hydrogen-bond structure in liquid water (2003) Science, 301, pp. 347-349;Omta, A.W., Kropman, M.F., Woutersen, S., Bakker, H.J., Influence of ions on the hydrogen-bond structure in liquid water (2003) J. Chem. Phys., 119, pp. 12457-12461;Kropman, M.F., Bakker, H.J., Vibrational relaxation of liquid water in ionic solvation shells (2003) Chem. Phys. Lett., 370, pp. 741-746;Bakker, H.J., Kropman, M.F., Omta, A.W., Effect of ions on the structure and dynamics of liquid water (2005) J. Phys.: Condens. Matter, 17, p. S3215;Collins, K.D., Washabaugh, M.W., The Hofmeister effect and the behaviour of water at interfaces (1985) Q. Rev. Biophys., 18, pp. 323-422;Cabarcos, O.M., Weinheimer, C.J., Lisy, J.M., Xantheas, S.S., Microscopic hydration of the fluoride anion (1999) J. Chem. Phys., 110, pp. 5-8;Topol, I.A., Tawa, G.J., Burt, S.K., Rashin, A.A., On the structure and thermodynamics of solvated monoatomic ions using a hybrid solvation model (1999) J. Chem. Phys., 111, pp. 10998-11014;Pérez, J.F., Flórez, E., Hadad, C.Z., Fuentealba, P., Restrepo, A., Stochastic search of the quantum conformational space of small lithium and bimetallic lithium-sodium clusters (2008) J. Phys. Chem. A, 112, pp. 5749-5755;Pérez, J.F., Hadad, C.Z., Restrepo, A., Structural studies of the water tetramer (2008) Int. J. Quantum Chem., 108, pp. 1653-1659;Arias, E., Florez, E., Pérez-Torres, J.F., Algorithm based on the Thomson problem for determination of equilibrium structures of metal nanoclusters (2017) J. Chem. Phys., 146, p. 244107;Alexandrova, A.N., Boldyrev, A.I., Search for the Lin 0/+1/-1 (n = 5-7) Lowest-Energy Structures Using the ab initio Gradient Embedded Genetic Algorithm (GEGA). Elucidation of the Chemical Bonding in the Lithium Clusters (2005) J. Chem. Theory Comput., 1, pp. 566-580;Grande-Aztatzi, R., Martinez-Alanis, P.R., Cabellos, J.L., Osorio, E., Martínez, A., Merino, G., Structural Evolution of Small Gold Clusters Doped by One and Two Boron Atoms (2014) J. Comput. Chem., 35, pp. 2288-2296;Ramírez-Manzanares, A., Peña, J., Azpiroz, J.M., Merino, G., A Hierarchical Algorithm for Molecular Similarity (H-FORMS) (2015) J. Comput. Chem., 36, pp. 1456-1466;Frisch, M.J., (2009) Gaussian 09, Revision D.01, , Gaussian, Inc., Wallingford, CT;Bader, R., (1990) Atoms in Molecules: A Quantum Theory, , Oxford University Press, NY;Weinhold, F., Landis, C., (2012) Discovering Chemistry with Natural Bond Orbitals, , Wiley, New York;Glendening, E.D., Badenhoop, J.K., Reed, A.E., Carpenter, J.E., Bohmann, J.A., Morales, C.M., Landis, C.R., Weinhold, F., (2013) NBO 6.0, , Madison;Keith, T.A., (2013) AIMAll (Version 13.05.06), , http://aim.tkgristmill.com, TK Gristmill Software, Overland Park, KS;Ramírez, F., Hadad, C.Z., Guerra, D., David, J., Restrepo, A., Structural studies of the water pentamer (2011) Chem. Phys. Lett., 507, p. 229;Hincapié, G., Acelas, N., Castaño, M., David, J., Restrepo, A., Structural studies of the water hexamer (2010) J. Phys. Chem. A, 114, p. 7809;Acelas, N., Hincapié, G., Guerra, D., David, J., Restrepo, A., Structures, energies, and bonding in the water heptamer (2013) J. Chem. Phys., 139, p. 044310;Trumm, M., Guerrero, Y.O., Réal, F., Masella, M., Vallet, V., Schimmelpfennig, B., Modeling the hydration of mono-atomic anions from the gas phase to the bulk phase: The case of the halide ions F-, Cl-, and Br- (2012) J. Chem. Phys., 136, p. 044509;Arshadi, M., Yamdagni, R., Kebarle, P., Hydration of the halide negative ions in the gas phase. II. Comparison of hydration energies for the alkali positive and halide negative ions (1970) J. Phys. Chem., 74, p. 1475;Hiraoka, K., Mizuse, S., Yamabe, S., Solvation of halide ions with water and acetonitrile in the gas phase (1998) J. Phys. Chem., 92, p. 3943;Espinosa, E., Alkorta, I., Elguero, J., Molins, E., From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-H?F-Y systems (2002) J. Chem. Phys., 117, pp. 5529-5542;Linus, P., (1939) The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, , Cornell University Press, Ithaca, New York;Coulson, C.A., (1961) Valence, , Oxford University Press;Gilli, G., Gilli, P., (2009) The Nature of the Hydrogen Bond, , Oxford University Press, New York;Vargas-Caamal, A., Cabellos, J.L., Ortiz-Chi, F., Rzepa, H.S., Restrepo, A., Merino, G., How many water molecules does it take to dissociate HCl? (2016) Chem.-Eur. J., 22, pp. 2812-2818;Gonzalez, J.D., Florez, E., Romero, J., Reyes, A., Restrepo, A., Microsolvation of Mg2+, Ca2+: Strong influence of formal charges in hydrogen bond networks (2013) J. Mol. Model., 19, pp. 1763-1777;Florez, E., Acelas, N., Ibarguen, C., Mondal, S., Cabellos, J.L., Merino, G., Restrepo, A., Microsolvation of NO3 -: Structural exploration and bonding analysis (2016) RSC Adv., 6, pp. 71913-71923spa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem