Mostrar el registro sencillo del ítem

dc.creatorBravo S.
dc.creatorCorrea J.
dc.creatorChico L.
dc.creatorPacheco M.
dc.date2019
dc.date.accessioned2020-04-29T14:53:41Z
dc.date.available2020-04-29T14:53:41Z
dc.identifier.issn20452322
dc.identifier.urihttp://hdl.handle.net/11407/5696
dc.descriptionWe analyze the symmetry and topological features of a family of materials closely related to penta-graphene, derived from it by adsorption or substitution of different atoms. Our description is based on a novel approach, called topological quantum chemistry, that allows to characterize the topology of the electronic bands, based on the mapping between real and reciprocal space. In particular, by adsorption of alkaline (Li or Na) atoms we obtain a nodal line metal at room temperature, with a continuum of Dirac points around the perimeter of the Brillouin zone. This behavior is also observed in some substitutional derivatives of penta-graphene, such as penta-PC2. Breaking of time-reversal symmetry can be achieved by the use of magnetic atoms; we study penta-MnC2, which also presents spin-orbit coupling and reveals a Chern insulator phase. We find that for this family of materials, symmetry is the source of protection for metallic and nontrivial topological phases that can be associated to the presence of fractional band filling, spin-orbit coupling and time-reversal symmetry breaking. © 2019, The Author(s).
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85071762621&doi=10.1038%2fs41598-019-49187-w&partnerID=40&md5=8dc7ffecff46b5ff215cb56372975af3
dc.sourceScientific Reports
dc.titleSymmetry-protected metallic and topological phases in penta-materials
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programFacultad de Ciencias Básicas
dc.identifier.doi10.1038/s41598-019-49187-w
dc.relation.citationvolume9
dc.relation.citationissue1
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationBravo, S., Universidad Técnica Federico Santa María, Departamento de Física, Valparaíso, Chile; Correa, J., Universidad de Medellín, Facultad de Ciencias Básicas, Medellín, Colombia; Chico, L., Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), C/Sor Juana Inés de la Cruz 3, Madrid, 28049, Spain; Pacheco, M., Universidad Técnica Federico Santa María, Departamento de Física, Valparaíso, Chile
dc.relation.referencesMagneto-optical effects in topological insulators (2016) Drouhin, H.-J., Wegrowe, J.-E. & Razeghi, M. (Eds) Proc. SPIE 9931, Spintronics IX, Vol. 9931, 99313I (International Society for Optics and Photonics
dc.relation.referencesTse, W.K., MacDonald, A.H., Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators (2010) Phys. Rev. Lett., 105, p. 057401
dc.relation.referencesBauer, S., Bobisch, C.A., Nanoscale electron transport at the surface of a topological insulator (2016) Nature Communications, 7. , COI: 1:CAS:528:DC%2BC28Xms1Klsrw%3D
dc.relation.referencesWang, S., Lin, B.-C., Wang, A.-Q., Yu, D.-P., Liao, Z.-M., Quantum transport in dirac and weyl semimetals: a review (2017) Advances in Physics: X, 2, pp. 518-544. , COI: 1:CAS:528:DC%2BC1MXivVCksrs%3D
dc.relation.referencesBernevig, B.A., Hughes, T.L., Zhang, S.-C., Quantum spin Hall effect and topological phase transition in HgTe quantum wells (2006) Science, 314, pp. 1757-1761
dc.relation.referencesHasan, M.Z., Kane, C.L., Colloquium: Topological insulators (2010) Reviews of Modern Physics, 82, pp. 3045-3067. , COI: 1:CAS:528:DC%2BC3MXht1Kgsg%3D%3D
dc.relation.referencesBansil, A., Lin, H., Das, T., Colloquium: Topological band theory (2016) Reviews of Modern Physics, 88, p. 021004
dc.relation.referencesSlager, R.-J., Mesaros, A., Juri?i?, V., Zaanen, J., The space group classification of topological band-insulators (2012) Nature Physics, 9, p. 98
dc.relation.referencesChiu, C.-K., Teo, J.C.Y., Schnyder, A.P., Ryu, S., Classification of topological quantum matter with symmetries (2016) Rev. Mod. Phys., 88, p. 035005
dc.relation.referencesKruthoff, J., de Boer, J., van Wezel, J., Kane, C.L., Slager, R.-J., Topological classification of crystalline insulators through band structure combinatorics (2017) Phys. Rev. X, 7, p. 041069
dc.relation.referencesBradlyn, B., Topological quantum chemistry (2017) Nature, 547, pp. 298-305. , COI: 1:CAS:528:DC%2BC2sXhtF2qurrO
dc.relation.referencesCano, J., Building blocks of topological quantum chemistry: Elementary band representations (2018) Phys. Rev. B, 97, p. 035139. , COI: 1:CAS:528:DC%2BC1MXlt1CjsLs%3D
dc.relation.referencesBradlyn, B., Band connectivity for topological quantum chemistry: Band structures as a graph theory problem (2018) Phys. Rev. B, 97, p. 035138. , COI: 1:CAS:528:DC%2BC1MXlt1eqs7Y%3D
dc.relation.referencesTang, C.-P., Xiong, S.-J., Shi, W.-J., Cao, J., Two-dimensional pentagonal crystals and possible spin-polarized dirac dispersion relations (2014) Journal of Applied Physics, 115, p. 113702
dc.relation.referencesZhang, S., Penta-graphene: A new carbon allotrope (2015) Proc. Natl. Acad. Sci. USA, 112, pp. 2372-2377. , COI: 1:CAS:528:DC%2BC2MXhvFCgsb8%3D
dc.relation.referencesZhang, C., Zhang, S., Wang, Q., Bonding-restricted structure search for novel 2d materials with dispersed c2 dimers (2016) Scientific Reports, 6
dc.relation.referencesLiu, Z., Penta-pt2n4: an ideal two-dimensional material for nanoelectronics (2018) Nanoscale, 10, pp. 16169-16177
dc.relation.referencesZhuang, H.L., From pentagonal geometries to two-dimensional materials (2019) Computational Materials Science, 159, pp. 448-453
dc.relation.referencesZhao, K., Li, X., Wang, S., Wang, Q., 2d planar penta-mn2 (m = pd, pt) sheets identified through structure search (2019) Phys. Chem. Chem. Phys., 21, pp. 246-251
dc.relation.referencesCerdá, J.I., Unveiling the pentagonal nature of perfectly aligned single-and double-strand si nano-ribbons on ag(110) (2016) Nature Communications, 7
dc.relation.referencesOyedele, A.D., Pdse2: Pentagonal two-dimensional layers with high air stability for electronics (2017) Journal of the American Chemical Society, 139, pp. 14090-14097
dc.relation.referencesLiu, H., Qin, G., Lin, Y., Hu, M., Disparate strain dependent thermal conductivity of two-dimensional penta-structures (2016) Nano Letters, 16, pp. 3831-3842. , COI: 1:CAS:528:DC%2BC28Xos1KhsL0%3D
dc.relation.referencesYuan, P.F., Zhang, Z.H., Fan, Z.Q., Qiu, M., Electronic structure and magnetic properties of penta-graphene nanoribbons (2017) Phys. Chem. Chem. Phys., 19, pp. 9528-9536. , COI: 1:CAS:528:DC%2BC2sXktFykt7c%3D
dc.relation.referencesHe, C., Wang, X.F., Zhang, W.X., Coupling effects of the electric field and bending on the electronic and magnetic properties of penta-graphene nanoribbons (2017) Phys. Chem. Chem. Phys., 19, pp. 18426-18433. , COI: 1:CAS:528:DC%2BC2sXhtVSis7rM
dc.relation.referencesRajbanshi, B., Sarkar, S., Mandal, B., Sarkar, P., Energetic and electronic structure of penta-graphene nanoribbons (2016) Carbon, 100, pp. 118-125. , COI: 1:CAS:528:DC%2BC28XmtFClsw%3D%3D
dc.relation.referencesChen, M., Zhan, H., Zhu, Y., Wu, H., Gu, Y., Mechanical properties of penta-graphene nanotubes (2017) The Journal of Physical Chemistry C, 121, pp. 9642-9647. , COI: 1:CAS:528:DC%2BC2sXmsFCkt7s%3D
dc.relation.referencesKrishnan, R., Su, W.-S., Chen, H.-T., A new carbon allotrope: Penta-graphene as a metal-free catalyst for CO oxidation (2017) Carbon, 114, pp. 465-472. , COI: 1:CAS:528:DC%2BC28XitFKrtb7J
dc.relation.referencesBravo, S., Correa, J., Chico, L., Pacheco, M., Tight-binding model for opto-electronic properties of penta-graphene nanostructures (2018) Scientific Reports, 8
dc.relation.referencesWu, X., Hydrogenation of penta-graphene leads to unexpected large improvement in thermal conductivity (2016) Nano Letters, 16, pp. 3925-3935. , COI: 1:CAS:528:DC%2BC28XnsVWjtrw%3D
dc.relation.referencesLi, X., Tuning the electronic and mechanical properties of penta-graphene via hydrogenation and fluorination (2016) Phys. Chem. Chem. Phys., 18, pp. 14191-14197. , COI: 1:CAS:528:DC%2BC28XltFGksLc%3D
dc.relation.referencesQuijano-Briones, J.J., Fernandez-Escamilla, H.N., Tlahuice-Flores, A., Doped penta-graphene and hydrogenation of its related structures: a structural and electronic DFT-D study (2016) Phys. Chem. Chem. Phys., 18, pp. 15505-15509. , COI: 1:CAS:528:DC%2BC28XotF2qtrg%3D
dc.relation.referencesEnriquez, J.I.G., Villagracia, A.R.C., Hydrogen adsorption on pristine, defected, and 3d-block transition metal-doped penta-graphene (2016) International Journal of Hydrogen Energy, 41, pp. 12157-12166. , COI: 1:CAS:528:DC%2BC28XhtVGmsLjM
dc.relation.referencesXiao, B., Li, Y.-C., Yu, X.-F., Cheng, J.-B., Penta-graphene: A Promising Anode Material as the Li/Na-Ion Battery with Both Extremely High Theoretical Capacity and Fast Charge/Discharge Rate (2016) ACS Applied Materials & Interfaces, 8, pp. 35342-35352. , COI: 1:CAS:528:DC%2BC28XitVSrsLnL
dc.relation.referencesBerdiyorov, G.R., Madjet, M.E.-A., First-principles study of electronic transport and optical properties of penta-graphene, penta-SiC2 and penta-CN2 (2016) RSC Adv., 6, pp. 50867-50873. , COI: 1:CAS:528:DC%2BC28Xot1SjsLg%3D
dc.relation.referencesBerdiyorov, G., Dixit, G., Madjet, M., Band gap engineering in penta-graphene by substitutional doping: First-principles calculations (2016) J. Phys. Condens. Matter, 28, p. 475001. , COI: 1:STN:280:DC%2BC2svgslGgtA%3D%3D
dc.relation.referencesZak, J., Band representations of space groups (1982) Phys. Rev. B, 26, pp. 3010-3023. , COI: 1:CAS:528:DyaL38Xlslartb8%3D
dc.relation.referencesVergniory, M.G., Graph theory data for topological quantum chemistry (2017) Phys. Rev. E, 96, p. 023310. , COI: 1:STN:280:DC%2BC1M%2FisFKmsA%3D%3D
dc.relation.referenceshttp://www.cryst.ehu.es/, Bilbao Crystallographic Server, University of the Basque Country, Bilbao, Basque Country, Spain
dc.relation.referencesMiller, S.C., Love, W.H., (1967) Tables of Irreducible Representations of Space Groups and Co-Representations of Magnetic Space Groups, , Pruett Press, Denver
dc.relation.referencesDresselhaus, M.S., Dresselhaus, G., Jorio, A., (2008) Group Theory - Applications to the Physics of Condensed Matter, , Springer, Berlin
dc.relation.referencesYoung, S.M., Kane, C.L., Dirac semimetals in two dimensions (2015) Phys. Rev. Lett., 115, p. 126803
dc.relation.referencesBurkov, A.A., Hook, M.D., Balents, L., Topological nodal semimetals (2011) Phys. Rev. B, 84, p. 235126
dc.relation.referencesWatanabe, H., Po, H.C., Zaletel, M.P., Vishwanath, A., Filling-Enforced Gaplessness in Band Structures of the 230 Space Groups (2016) Phys. Rev. Lett., 117, p. 096404
dc.relation.referencesChen, R., Po, H.C., Neaton, J.B., Vishwanath, A., Topological materials discovery using electron filling constraints (2018) Nature Physics, 14, pp. 55-61. , COI: 1:CAS:528:DC%2BC2sXhs1aisrvN
dc.relation.referencesSoler, J.M., The siesta method for ab initio order-n materials simulation (2002) Journal of Physics: Condensed Matter, 14, p. 2745. , COI: 1:CAS:528:DC%2BD38XivFGrsL4%3D
dc.relation.referencesGiannozzi, P., Quantum espresso: a modular and open-source software project for quantum simulations of materials (2009) Journal of Physics: Condensed Matter, 21, p. 395502. , http://www.quantum-espresso.org, PID: 21832390
dc.relation.referencesGiannozzi, P., Advanced capabilities for materials modelling with quantum espresso (2017) Journal of Physics: Condensed Matter, 29, p. 465901. , COI: 1:STN:280:DC%2BC1M7jvFOjuw%3D%3D, PID: 29064822
dc.relation.referencesPerdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Physical Review Letters, 77, p. 3865. , COI: 1:CAS:528:DyaK28XmsVCgsbs%3D
dc.relation.referencesYagmurcukardes, M., Pentagonal monolayer crystals of carbon, boron nitride, and silver azide (2015) Journal of Applied Physics, 118, p. 104303
dc.relation.referencesYu, R., Weng, H., Fang, Z., Dai, X., Hu, X., Topological node-line semimetal and dirac semimetal state in antiperovskite cu3PdN (2015) Phys. Rev. Lett., 115, p. 036807
dc.relation.referencesMatsuura, S., Chang, P.Y., Schnyder, A.P., Ryu, S., Protected boundary states in gapless topological phases (2013) New Journal of Physics, 15, p. 065001
dc.relation.referencesTopp, A., The effect of spin-orbit coupling on nonsymmorphic square-net compounds (2017) Journal of Physics and Chemistry of Solids
dc.relation.referencesGuan, S., Two-dimensional Spin-Orbit Dirac Point in Monolayer HfGeTe (2017) Physical Review Materials, 1, p. 054003
dc.relation.referencesKlemenz, S., Lei, S., Schoop, L., Topological semimetals in square-net materials (2019) Annual Review of Materials Research, 49. , &
dc.relation.referencesTaherinejad, M., Garrity, K.F., Vanderbilt, D., Wannier center sheets in topological insulators (2014) Physical Review B, 89, p. 115102
dc.relation.referencesSoluyanov, A.A., Vanderbilt, D., Wannier representation of Z2 topological insulators (2011) Physical Review B, 83, p. 035108
dc.relation.referencesMarzari, N., Mostofi, A.A., Yates, J.R., Souza, I., Vanderbilt, D., Maximally localized Wannier functions: Theory and applications (2012) Reviews of Modern Physics, 84, pp. 1419-1475
dc.relation.referencesMostofi, A.A., An updated version of Wannier90: A tool for obtaining maximally-localised Wannier functions (2014) Computer Physics Communications, 185, pp. 2309-2310
dc.relation.referencesSoluyanov, A.A., Vanderbilt, D., Smooth gauge for topological insulators (2012) Phys. Rev. B, 85, p. 115415
dc.relation.referencesGresch, D., Z2Pack: Numerical implementation of hybrid Wannier centers for identifying topological materials (2017) Physical Review B, 95, p. 075146
dc.relation.referencesWu, Q., Zhang, S., Song, H.-F., Troyer, M., Soluyanov, A.A., WannierTools: An open-source software package for novel topological materials (2018) Computer Physics Communications, 224, pp. 405-416. , COI: 1:CAS:528:DC%2BC2sXhslSgtrnO
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem