Mostrar el registro sencillo del ítem

dc.creatorAlvarez-Garcia A.
dc.creatorFlórez E.
dc.creatorMoreno A.
dc.creatorJimenez-Orozco C.
dc.date2019
dc.date.accessioned2020-04-29T14:54:00Z
dc.date.available2020-04-29T14:54:00Z
dc.identifier.issn24688231
dc.identifier.urihttp://hdl.handle.net/11407/5783
dc.descriptionThe use of CO2 to produce methanol is a reaction of growing interest, where bimetallic Cu-M catalysts become relevant as an alternative to the known Cu/Zn/Al2O3 catalyst. However, there is a lack in the understanding of bimetallic systems at atomic label and its capability towards CO2 activation, a key step in CO2 valorization. In this work, Cu-Pd and Cu-Ni small clusters are studied using DFT. Among the evaluated bimetallic systems, the binding of CO2 on Cu3Pd has the highest thermodynamics stability (28.82 kcal/mol) and the lowest energy barrier (40.91 kcal/mol). The activation energy for the dissociation of CO2 (CO2
dc.description? CO
dc.description+ O
dc.description) follows the trend: Cu4 < Cu3Pd < Pd4 < CuPd3 < Cu2Pd2. Therefore, the ideal composition in terms of adsorption energy and activation barrier is the Cu3Pd bimetallic system. The interaction O-M is weak while C-M is responsible of the binding, a charge migration from cluster to CO2 was seen, and the band around 1150 cm?1 in the IR was only found in activated CO2. The results of this work indicate that the Cu3Pd cluster has catalytic potential towards CO2 activation and dissociation, opening the doors to explore further the Cu3Pd system both theoretically and experimentally. © 2019 Elsevier B.V.
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85076548106&doi=10.1016%2fj.mcat.2019.110733&partnerID=40&md5=48ea618c59aea3e280a50468d2b0783e
dc.sourceMolecular Catalysis
dc.subjectBimetallic
dc.subjectCatalysis
dc.subjectCluster
dc.subjectCO2
dc.subjectHydrogenation
dc.subjectActivation energy
dc.subjectBinding energy
dc.subjectCarbon dioxide
dc.subjectCatalysis
dc.subjectCatalysts
dc.subjectDissociation
dc.subjectHydrogenation
dc.subjectThermodynamics
dc.subjectActivation barriers
dc.subjectAdsorption energies
dc.subjectBimetallic
dc.subjectBimetallic clusters
dc.subjectBimetallic systems
dc.subjectCatalytic potential
dc.subjectCharge migration
dc.subjectCluster
dc.subjectBinary alloys
dc.titleCO2 activation on small Cu-Ni and Cu-Pd bimetallic clusters
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programFacultad de Ciencias Básicas
dc.identifier.doi10.1016/j.mcat.2019.110733
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationAlvarez-Garcia, A., Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia; Flórez, E., Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No 30-65, Medellín, Colombia; Moreno, A., Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia; Jimenez-Orozco, C., Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No 30-65, Medellín, Colombia
dc.relation.referencesHunt, A.J., Sin, E.H.K., Marriott, R., Clark, J.H., Generation, capture, and utilization of industrial carbon dioxide (2010) ChemSusChem, 3, pp. 306-322
dc.relation.referencesBaciocchi, R., Costa, G., Zingaretti, D., Transformation and Utilization of Carbon Dioxide (2014)
dc.relation.referencesPérez-fortes, M., Schöneberger, J.C., Boulamanti, A., Tzimas, E., Methanol synthesis using captured CO 2 as raw material?: techno-economic and environmental assessment (2016) Appl. Energy, 161, pp. 718-732
dc.relation.referencesRen, H., Xu, C.-H., Zhao, H.-Y., Wang, Y.-X., Liu, J.J.-Y., Liu, J.J.-Y., Methanol synthesis from CO2 hydrogenation over Cu/?-Al2O3 catalysts modified by ZnO, ZrO2 and MgO (2015) J. Ind. Eng. Chem., 28, pp. 261-267
dc.relation.referencesWaugh, K.C., Methanol synthesis (2012) Catal. Lett., 142, pp. 1153-1166
dc.relation.referencesCenti, G.G., Perathoner, S., Green Carbon Dioxide: Advances in CO2 Utilization (2014)
dc.relation.referencesAtsonios, K., Panopoulos, K.D., Kakaras, E., Investigation of technical and economic aspects for methanol production through CO2 hydrogenation (2016) Int. J. Hydrogen Energy, 41, pp. 2202-2214
dc.relation.referencesBoretti, A., Renewable hydrogen to recycle CO2 to methanol (2013) Int. J. Hydrogen Energy, 38, pp. 1806-1812
dc.relation.referencesDwivedi, A., Gudi, R., Biswas, P., An improved tri-reforming based methanol production process for enhanced CO2valorization (2017) Int. J. Hydrogen Energy, 42, pp. 23227-23241
dc.relation.referencesShaharun, M.S., Alotaibi, M.A., Alharthi, A.I., Recent developments on heterogeneous catalytic CO 2 reduction to methanol (2019) J. CO2 Util., 34, pp. 20-33
dc.relation.referencesOlah, G., Goeppert, A., Prakash, S., Beyong Oil and Gas: The Methanol Economy (2009), Willey-VCH Germany
dc.relation.referencesBehrens, M., Studt, F., Kasatkin, I., Kühl, S., Hävecker, M., Abild-pedersen, F., Zander, S., Schlögl, R., The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts (2012) Science (80-.), 336, pp. 893-898
dc.relation.referencesLiu, X.M., Lu, G.Q., Yan, Z.F., Beltramini, J., Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2 (2003) Ind. Eng. Chem. Res., 42, pp. 6518-6530
dc.relation.referencesSinfelt, J., Bimetallic Catalysts Discoveries, Concepts, and Applications (1983), Wiley United state
dc.relation.referencesYu, W., Porosoff, M.D., Chen, J.G., Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts (2012) Chem. Rev., 112, pp. 5780-5817
dc.relation.referencesJeong, E., Hee, Y., Lee, D., Moon, D., Lee, K., Hydrogenation of CO 2 to methanol over Pd Cu/CeO2 catalysts (2017) Mol. Catal., 434, pp. 146-153
dc.relation.referencesDeerattrakul, V., Dittanet, P., Sawangphruk, M., Kongkachuichay, P., CO2 hydrogenation to methanol using Cu-Zn catalyst supported on reduced graphene oxide nanosheets (2016) J. CO2 Util., 16, pp. 104-113
dc.relation.referencesJiang, X., Koizumi, N., Guo, X., Song, C., Bimetallic Pd-Cu catalysts for selective CO2 hydrogenation to methanol (2015) Appl. Catal. B Environ., 170-171, pp. 173-185
dc.relation.referencesLiu, Y., Liu, D., Study of bimetallic Cu-Ni/-Al2O3 catalysts for carbon dioxide hydrogenation (1999) Int. J. Hydrogen Energy, 24, pp. 351-354
dc.relation.referencesKlaja, O., Szczygie?, J., Trawczy?ski, J., Szyja, B.M., The CO2 dissociation mechanism on the small copper clusters the influence of geometry (2017) Theor. Chem. Acc., 136, pp. 1-9
dc.relation.referencesLiu, C., Yang, B., Tyo, E., Seifert, S., DeBartolo, J., von Issendorff, B., Zapol, P., Curtiss, L.A., Carbon dioxide conversion to methanol over size-selected Cu 4 clusters at low pressures (2015) J. Am. Chem. Soc., 137, pp. 8676-8679
dc.relation.referencesYang, B., Liu, C., Halder, A., Tyo, E.C., Martinson, A.B.F., Seifert, S., Zapol, P., Vajda, S., Copper cluster size effect in methanol synthesis from CO2 (2017) J. Phys. Chem. C, 121, pp. 10406-10412
dc.relation.referencesTao, H., Li, Y., Cai, X., Zhou, H., Li, Y., Lin, W., Huang, S., Zhang, Y., What is the best size of subnanometer copper clusters for CO 2 conversion to methanol at Cu/TiO 2 interfaces? A density functional theory study (2019) J. Phys. Chem. C, 123, pp. 24118-24132
dc.relation.referencesRodriguez, J.A., Evans, J., Feria, L., Vidal, A.B., Liu, P., Nakamura, K., Illas, F., CO2 hydrogenation on Au/TiC, Cu/TiC, and Ni/TiC catalysts: production of CO, methanol, and methane (2013) J. Catal., 307, pp. 162-169
dc.relation.referencesMaleki, F., Schlexer, P., Pacchioni, G., Support effects and reaction mechanism of acetylene trimerization over silica-supported Cu4 clusters: a DFT study (2018) Surf. Sci., 668, pp. 125-133
dc.relation.referencesMehmood, F., Greeley, J., Zapol, P., Curtiss, L.A., Comparative density functional study of methanol descomposition on Cu4 and Co4 (2010) J. Phys. Chem. B, 114, pp. 14458-14466
dc.relation.referencesKansara, S., Gupta, S.K., Sonvane, Y., Catalytic activity of Cu4-cluster to adsorb H2S gas: H -BN nanosheet (2018) AIP Conf. Proc., 1961
dc.relation.referencesReina, M., Martínez, A., Silybin interacting with Cu4, Ag4 and Au4 clusters: do these constitute antioxidant materials? (2017) Comput. Theor. Chem., 1112, pp. 1-9
dc.relation.referencesNiu, J., Ran, J., Ou, Z., Du, X., Wang, R., Qi, W., CO2 dissociation over PtxNi4-x bimetallic clusters with and without hydrogen sources: a density functional theory study (2016) J. CO2 Util., 16, pp. 431-441
dc.relation.referencesGálvez-González, L.E., Juárez-Sánchez, J.O., Pacheco-Contreras, R., Garzón, I.L., Paz-Borbón, L.O., Posada-Amarillas, A., CO 2 adsorption on gas-phase Cu 4?x Pt x (x = 0 4) clusters: a DFT study (2018) Phys. Chem. Chem. Phys., 20, pp. 17071-17080
dc.relation.referencesAdamo, C., Barone, V., Toward reliable density functional methods without adjustable parameters: the PBE0 model (1999) J. Chem. Phys., 110, pp. 6158-6170
dc.relation.referencesFuentealba, P., Preuss, H., Stoll, H., Von Szentpaly, L., A proper account of core-polarization with pseudopotentials: single valence-electron alkali compounds (1982) Chem. Phys. Lett., 89, pp. 418-422
dc.relation.referencesCao, X., Dolg, M., Segmented contraction scheme for small-core actinide pseudopotential basis sets (2002) J. Mol. Struct. Theochem., 581, pp. 139-147
dc.relation.referencesRodríguez-Kessler, P.L., Pan, S., Florez, E., Cabellos, J.L., Merino, G., Structural evolution of the rhodium-doped silver clusters AgnRh (n ? 15) and their reactivity toward NO (2017) J. Phys. Chem. C, 121, pp. 19420-19427
dc.relation.referencesRodríguez-Kessler, P.L., Murillo, F., Rodríguez-Domínguez, A.R., Navarro-Santos, P., Merino, G., Structure of V-doped Pd n (n = 2 12) clusters and their ability for H 2 dissociation (2018) Int. J. Hydrogen Energy, 43, pp. 20636-20644
dc.relation.referencesFrisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Li, M., Gaussian 09. Revision A.02, Wallingford CT (2016)
dc.relation.referencesLeopold, D.G., Ho, J., Lineberger, W.C., Photoelectron spectroscopy of mass-selected metal cluster anions. I. Cu ? n, n =1 10 (2002) J. Chem. Phys., 86, pp. 1715-1726
dc.relation.referencesHo, W.C.L.J., Ervin, K.M., Photoelectron spectroscopy of metal cluster anions: Cun, Agn, and Aun (1990) J. Chem. Phys., 93, pp. 6987-7002
dc.relation.referencesJames, A.M., Lemire, G.W., Langridge-Smith, P.R., Threshold photoionisation spectroscopy of the CuAg molecule (1994) Chem. Phys. Lett., 227, pp. 503-510
dc.relation.referencesHo, J., Ervin, K.M., Polak, M.L., Gilles, M.K., Lineberger, W.C., A study of the electronic structures of Pd?2 and Pd2 by photoelectron spectroscopy (1991) J. Chem. Phys., 95, p. 4845
dc.relation.referencesReed, A.E., Weinstock, R.B., Weinhold, F., Natural population analysis (1985) J. Chem. Phys., 83, pp. 735-746
dc.relation.referencesWiberg, K.B., Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane (1968) Tetrahedron., 24, pp. 1083-1096
dc.relation.referencesSizova, O.V., Skripnikov, L.V., Sokolov, A.Y., Symmetry decomposition of quantum chemical bond orders (2008) J. Mol. Struct. THEOCHEM., 870, pp. 1-9
dc.relation.referencesPeng, C., Schlegel, H.B., Combining STQN methods to find transition states (1993) Isr. J. Chem., 33, pp. 449-454
dc.relation.referencesFlorez, E., Tiznado, W., Mondragón, F., Fuentealba, P., Theoretical study of the interaction of molecular oxygen with copper clusters (2005) J. Phys. Chem. A, 109, pp. 7815-7821
dc.relation.referencesFernandez, E., Boronat, M., Corma, A., Trends in the reactivity of molecular O2 with copper clusters: influence of size and shape (2015) J. Phys. Chem. C, 119, pp. 19832-19846
dc.relation.referencesGonzález-Torres, J.C., Bertin, V., Poulain, E., Olvera-Neria, O., The CO oxidation mechanism on small Pd clusters. A theoretical study (2015) J. Mol. Model., 21
dc.relation.referencesLing, L., Fan, L., Feng, X., Wang, B., Zhang, R., Effects of the size and Cu modulation of Pdn(n ? 38) clusters on Hg0adsorption (2017) Chem. Eng. J., 308, pp. 289-298
dc.relation.referencesGoel, S., Mansunov, A.E., Density functional theory of small nickel clusters (2012) J. Mol. Model., 18, pp. 783-790
dc.relation.referencesJia, T.T., Lu, C.H., Ding, K.N., Zhang, Y.F., Chen, W.K., Oxidation of Pdn(n=1-5) clusters on single vacancy graphene: a first-principles study (2013) Comput. Theor. Chem., 1020, pp. 91-99
dc.relation.referencesGibbs, G.V., Downs, R.T., Prewitt, C.T., Rosso, K.M., Ross, N.L., Cox, D.F., Electron density distributions calculated for the nickel sulfides millerite, vaesite, and heazlewoodite and nickel metal: a case for the importance of Ni-Ni bond paths for electron transport (2005) J. Phys. Chem. B, 109, pp. 21788-21795
dc.relation.referencesPauling, L., Atomic radii and interatomic distances in metals (1947) J. Am. Chem. Soc., 69, pp. 542-553
dc.relation.referencesJayaprakash, R., Shanker, J., Correlation between electronegativity and high temperature superconductivity (1993) J. Phys. Chem. Solids, 54, pp. 365-369
dc.relation.referencesKabir, M., Mookerjee, A., Bhattacharya, A.K., Structure and stability of copper clusters: a tight-binding molecular dynamics study (2004) Phys. Rev. A - At. Mol. Opt. Phys., 69, pp. 1-10
dc.relation.referencesCortés-Arriagada, D., Oyarzún, M.P., Sanhueza, L., Toro-Labbé, A., Binding of trivalent arsenic onto the tetrahedral Au20 and Au19Pt clusters: implications in adsorption and sensing (2015) J. Phys. Chem. A, 119, pp. 6909-6918
dc.relation.referencesLi, G., Chen, X., Zhou, Z., Wang, F., Yang, H., Yang, J., Xu, B., Liu, D., Theoretical insights into the structural, relative stable, electronic, and gas sensing properties of Pb:NAun (n = 2-12) clusters: a DFT study (2017) RSC Adv., 7, pp. 45432-45441
dc.relation.referencesLuo, C., Al, E., First principles study of small palladium cluster growth and isomerization (2007) Int. J. Quantum Chem., 107, pp. 1632-1641
dc.relation.referencesJug, K., Zimmermann, B., Calaminici, P., Köster, A.M., Structure and stability of small copper clusters (2002) J. Chem. Phys., 116, pp. 4497-4507
dc.relation.referencesPreda, G., Pacchioni, G., Chiesa, M., Giamello, E., Formation of CO2? Radical Anions from CO2 Adsorption on an Electron-Rich MgO Surface a Combined Ab Initio and Pulse EPR Study (2008), pp. 19568-19576
dc.relation.referencesYanagimachi, A., Koyasu, K., Valdivielso, D.Y., Gewinner, S., Schöllkopf, W., Fielicke, A., Tsukuda, T., Size-specific, dissociative activation of carbon dioxide by cobalt cluster anions (2016) J. Phys. Chem. C, 120, pp. 14209-14215
dc.relation.referencesGautam, S., Dharamvir, K., Goel, N., CO2 adsorption and activation over medium sized Cun (n=7, 13 and 19) clusters: a density functional study (2013) Comput. Theor. Chem., 1009, pp. 8-16
dc.relation.referencesSaputro, A.G., Agusta, M.K., Wungu, T.D.K., Suprijadi, F.R., Dipojono, H.K., DFT study of adsorption of CO2 on palladium cluster doped by transition metal (2016) J. Phys. Conf. Ser., 739
dc.relation.referencesÁlvarez, A., Borges, M., Corral-Pérez, J.J., Olcina, J.G., Hu, L., Cornu, D., Huang, R., Urakawa, A., CO2Activation over catalytic surfaces (2017) ChemPhysChem., 18, pp. 3135-3141
dc.relation.referencesHan, S.L., Xue, X., Nie, X.C., Zhai, H., Wang, F., Sun, Q., Jia, Y., Guo, Z.X., First-principles calculations on the role of ni-doping in Cun clusters: from geometric and electronic structures to chemical activities towards CO2 (2010) Phys. Lett. Sect. A Gen. At. Solid State Phys., 374, pp. 4324-4330
dc.relation.referencesKattel, S., Ramírez, P.J., Chen, J.G., Rodriguez, J.A., Liu, P., Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts (2017) Science (80-.), 355, pp. 1296-1299
dc.relation.referencesLi, Y., Chan, S.H., Sun, Q., Heterogeneous catalytic conversion of CO2: a comprehensive theoretical review (2015) Nanoscale, 7, pp. 8663-8683
dc.relation.referencesMackenzie, S., Green, A., Fielicke, A., Gentleman, A.S., Justen, J., Schoellkopf, W., IR signature of size-selective CO2 activation on small platinum cluster anions, ptn- (n = 4-7) (2018) Angew. Chem. Int. Ed., pp. 4-6
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem