Mostrar el registro sencillo del ítem

dc.creatorForgionny A.
dc.creatorAcelas N.Y.
dc.creatorOcampo-Pérez R.
dc.creatorPadilla-Ortega E.
dc.creatorLeyva-Ramos R.
dc.creatorFlórez E.
dc.date2021
dc.date.accessioned2021-02-05T14:57:40Z
dc.date.available2021-02-05T14:57:40Z
dc.identifier.issn9441344
dc.identifier.urihttp://hdl.handle.net/11407/5901
dc.descriptionIn the current work, a deep study to understand the adsorption phenomena occurring in single and multicomponent systems was conducted by using spectroscopic characterization, and computational tools. The experimental results showed that the adsorption capacity of chili seed is higher for Pb2+ (48 mg/g) than Cu2+ (4.1 mg/g) ions in single systems. However, the adsorption study in multicomponent systems provides important conclusions of the concentration effect of the metal ions, showing a significant antagonistic and competitive effect of both ions under equivalent concentrations of them (qPb2+ is 56% reduced) or high concentration of Pb2+ (qCu2+ is 50% reduced). Computational results correlated well with the experimental ones and evidenced all interactions proposed from spectroscopy results, accounting for the occurrence of complexation and electrostatic mechanisms between metal ions and the surface oxygenated functional groups (hydroxyl, carboxyl, and carboxylate) onto chili seed. Chemistry quantum descriptors supported the reactivity behavior of the chemical species implicated. All results evidenced that Pb2+ and Cu2+ adsorption on chili seed surface is governed by the occurrence of combined ionic exchange, π-interaction, complexation, and electrostatic attraction. © 2021, Springer-Verlag GmbH Germany, part of Springer Nature.
dc.language.isoeng
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85099459696&doi=10.1007%2fs11356-020-11721-z&partnerID=40&md5=9140850629dba41dd6ec7896a3db59b2
dc.sourceEnvironmental Science and Pollution Research
dc.subjectAdsorptionspa
dc.subjectCopperspa
dc.subjectLeadspa
dc.subjectMechanismspa
dc.subjectMulticomponentspa
dc.subjectSinglespa
dc.titleUnderstanding mechanisms in the adsorption of lead and copper ions on chili seed waste in single and multicomponent systems: a combined experimental and computational study
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.identifier.doi10.1007/s11356-020-11721-z
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationForgionny, A., Grupo de Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationAcelas, N.Y., Grupo de Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationOcampo-Pérez, R., Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosi, San Luis Potosi, 78260, Mexico
dc.affiliationPadilla-Ortega, E., Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosi, San Luis Potosi, 78260, Mexico
dc.affiliationLeyva-Ramos, R., Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosi, San Luis Potosi, 78260, Mexico
dc.affiliationFlórez, E., Grupo de Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.relation.referencesAli, I., Gupta, V.K., Advances in water treatment by adsorption technology (2007) Nat Protoc, 1, pp. 2661-2667
dc.relation.referencesBardestani, R., Roy, C., Kaliaguine, S., The effect of biochar mild air oxidation on the optimization of lead (II) adsorption from wastewater (2019) J Environ Manag, 240, pp. 404-420. , COI: 1:CAS:528:DC%2BC1MXntVCrs7c%3D
dc.relation.referencesBayo, J., Kinetic studies for Cd(II) biosorption from treated urban effluents by native grapefruit biomass (Citrus paradisi L.): The competitive effect of Pb(II), Cu(II) (2012) Chem Eng J, 191, pp. 278-287
dc.relation.referencesBeni, A.A., Esmaeili, A., Biosorption, an efficient method for removing heavy metals from industrial effluents: a review (2020) Environ Technol Innov, 17, p. 100503
dc.relation.referencesBhatnagar, A., Sillanpää, M., Witek-krowiak, A., Agricultural waste peels as versatile biomass for water purification: a review (2015) Chem Eng J, 270, pp. 244-271
dc.relation.referencesBohli, T., Ouederni, A., Villaescusa, I., Simultaneous adsorption behavior of heavy metals onto microporous olive stones activated carbon: analysis of metal interactions (2017) Euro-Mediterranean J Environ Integr, 2, pp. 1-15
dc.relation.referencesBonilla-Petriciolet, A., Mendoza-Castillo, D.I., Dotto, G.L., Duran-Valle, C.J., (2019) Adsorption in water treatment, , Elsevier Inc., Amsterdam
dc.relation.referencesBurakov, A.E., Galunin, E.V., Burakova, I.V., Kucherova, A.E., Agarwal, S., Tkachev, A.G., Gupta, V.K., Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review (2018) Ecotoxicol Environ Saf, 148, pp. 702-712
dc.relation.referencesCalero, M., Pérez, A., Blázquez, G., Ronda, A., Martín-Lara, M.A., Characterization of chemically modified biosorbents from olive tree pruning for the biosorption of lead (2013) Ecol Eng, 58, pp. 344-354
dc.relation.referencesChen, Q., Zheng, J., Wen, L., Yang, C., Zhang, L., A multi-functional-group modified cellulose for enhanced heavy metal cadmium adsorption: performance and quantum chemical mechanism (2019) Chemosphere, 224, pp. 509-518
dc.relation.referencesChen, C., Chen, Q., Kang, J., Shen, J., Wang, B., Guo, F., Chen, Z., Hydrophilic triazine-based dendron for copper and lead adsorption in aqueous systems: performance and mechanism (2020) J Mol Liq, 298, p. 112031. , COI: 1:CAS:528:DC%2BC1MXit1artrrJ
dc.relation.referencesCruz-Olivares, J., Pérez-Alonso, C., Barrera-Díaz, C., López, G., Balderas-Hernández, P., Inside the removal of lead(II) from aqueous solutions by De-Oiled Allspice Husk in batch and continuous processes (2010) J Hazard Mater, 181, pp. 1095-1101
dc.relation.referencesDimpe, K.M., Nomngongo, P.N., A review on the efficacy of the application of myriad carbonaceous materials for the removal of toxic trace elements in the environment (2017) Trends Environ Anal Chem, 16, pp. 24-31
dc.relation.referencesDing, Y., Jing, D., Gong, H., Zhou, L., Yang, X., Biosorption of aquatic cadmium(II) by unmodified rice straw (2012) Bioresour Technol, 114, pp. 20-25
dc.relation.referencesFernández-López, J.A., Angosto, J.M., Roca, M.J., Doval Miñarro, M., Taguchi design-based enhancement of heavy metals bioremoval by agroindustrial waste biomass from artichoke (2019) Sci Total Environ, 653, pp. 55-63
dc.relation.referencesForgionny, A., Acelas, N.Y., Jimenez-orozco, C., Flórez, E., Toward the design of efficient adsorbents for Hg2+ removal: molecular and thermodynamic insights (2020) Int J Quantum Chem, 120, pp. 1-11
dc.relation.referencesFreundlich, H.M.F., über die adsorption in losungen (adsorption in solution) (1907) Z Phys Chem, 57, pp. 385-490. , COI: 1:CAS:528:DyaD2sXksFCk
dc.relation.referencesFrisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Cioslowskifox, D.J., (2009), Gaussian 09, Revision A.01, Gaussian, Inc, Wallingford
dc.relation.referencesGirish, C.R., Multicomponent adsorption and the interaction between the adsorbent and the adsorbate: a review (2018) Int J Mech Eng Technol, 9, pp. 177-188
dc.relation.referencesGonzalez, J.D., Florez, E., Romero, J., Reyes, A., Restrepo, A., Microsolvation of Mg2+, Ca2+: strong influence of formal charges in hydrogen bond networks (2013) J Mol Model, 19, pp. 1763-1777
dc.relation.referencesGuediri, A., Bouguettoucha, A., Chebli, D., Chafai, N., Molecular dynamic simulation and DFT computational studies on the adsorption performances of methylene blue in aqueous solutions by orange peel-modi fi ed phosphoric acid (2020) J Mol Struct, 1202, p. 127290. , COI: 1:CAS:528:DC%2BC1MXitV2gs7%2FK
dc.relation.referencesHegazi, H.A., Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents (2013) Hous Build Natl Res Cent HBRC J, 9, pp. 276-282
dc.relation.referencesHo, Y.S., Chiu, W.T., Sen, H.C., Huang, C.T., Sorption of lead ions from aqueous solution using tree fern as a sorbent (2004) Hydrometallurgy, 73, pp. 55-61
dc.relation.referencesHossain, M.A., Ngo, H.H., Guo, W.S., Setiadi, T., Adsorption and desorption of copper (II) ions onto garden grass (2012) Bioresour Technol, 121, pp. 386-395. , COI: 1:CAS:528:DC%2BC38XhtlShtLbJ
dc.relation.referencesHotová, G., Slovák, V., Zelenka, T., Maršálek, R., The role of the oxygen functional groups in adsorption of copper (II) on carbon surface (2020) Sci Total Environ, 711, p. 135436
dc.relation.referencesIgwe, J.C., Abia, A.A., Adsorption isotherm studies of Cd (II), Pb (II) and Zn (II) ions bioremediation from aqueous solution using unmodified and EDTA-modified maize cob (2007) Eclética Química, 32, pp. 33-42. , COI: 1:CAS:528:DC%2BD2sXotVWku78%3D
dc.relation.referencesIvanets, A., Kitikova, N., Shashkova, I., Matrunchik, Y., Kul’bitskaya, L., Sillanpää, M., Non-acidic synthesis of phosphatized dolomite and its sorption behaviour towards Pb 2+, Zn2+, Cu2+, Cd2+, Ni2+, Sr2+ and Co2+ ions in multicomponent aqueous solution (2016) Environ Technol Innov, 6, pp. 152-164
dc.relation.referencesIvanets, A.I., Kitikova, N.V., Shashkova, I.L., Roshchina, M.Y., Srivastava, V., Sillanpää, M., Adsorption performance of hydroxyapatite with different crystalline and porous structure towards metal ions in multicomponent solution (2019) J Water Process Eng, 32, p. 100963
dc.relation.referencesJones, D., Freeman, C., Sánchez-Rodrıíguez, A., Waste water treatment (2017) Encycl Appl Plant Sci, 3, pp. 352-362
dc.relation.referencesJoseph, L., Jun, B., Flora, J.R.V., Removal of heavy metals from water sources in the developing world using low-cost materials: a review (2019) Chemosphere, 229, pp. 142-159. , COI: 1:CAS:528:DC%2BC1MXptlOrt74%3D
dc.relation.referencesKamsonlian, S., Balomajumder, C., Chand, S., Suresh, S., Biosorption of Cd (II) and As (III) ions from aqueous solution by tea waste biomass (2011) Afr J Environ Sci Technol, 5, pp. 1-7. , COI: 1:CAS:528:DC%2BC3MXisFCqsrs%3D
dc.relation.referencesKariuki, Z., Kiptoo, J., Onyancha, D., Biosorption studies of lead and copper using rogers mushroom biomass ‘Lepiota hystrix’ (2017) S Afr J Chem Eng, 23, pp. 62-70
dc.relation.referencesLangmuir, I., The constitution and fundamental properties of solids and liquids (1916) Part I Solids J Am Chem Soc, 38, pp. 2221-2295
dc.relation.referencesLee, M.E., Park, J.H., Chung, J.W., Comparison of the lead and copper adsorption capacities of plant source materials and their biochars (2019) J Environ Manag, 236, pp. 118-124
dc.relation.referencesLi, C., Ma, H., Venkateswaran, S., Hsiao, B.S., Highly efficient and sustainable carboxylated cellulose filters for removal of cationic dyes / heavy metals ions (2020) Chem Eng J, 389, p. 123458
dc.relation.referencesLiu, X., Chen, Z.Q., Han, B., Su, C.L., Han, Q., Chen, W.Z., Biosorption of copper ions from aqueous solution using rape straw powders: optimization, equilibrium and kinetic studies (2018) Ecotoxicol Environ Saf, 150, pp. 251-259
dc.relation.referencesLiu, Y., Gao, Q., Pu, S., Wang, H., Xia, K., Han, B., Zhou, C., Carboxyl-functionalized lotus seedpod: a highly efficient and reusable agricultural waste-based adsorbent for removal of toxic Pb 2+ ions from aqueous solution (2019) Colloids Surfaces A Physicochem Eng Asp, 568, pp. 391-401
dc.relation.referencesLiu, Y., Peng, Y., An, B., Li, L., Liu, Y., Effect of molecular structure on the adsorption affinity of sulfonamides onto CNTs: batch experiments and DFT calculations (2020) Chemosphere, 246, p. 125778
dc.relation.referencesMa, J., Li, T., Liu, Y., Cai, T., Wei, Y., Dong, W., Chen, H., Rice husk derived double network hydrogel as efficient adsorbent for Pb(II), Cu(II) and Cd(II) removal in individual and multicomponent systems (2019) Bioresour Technol, 290, p. 121793
dc.relation.referencesMartín-Lara, M.A., Blázquez, G., Calero, M., Almendros, A.I., Ronda, A., Binary biosorption of copper and lead onto pine cone shell in batch reactors and in fixed bed columns (2016) Int J Miner Process, 148, pp. 72-82
dc.relation.referencesMedellin-Castillo, N.A., Padilla-Ortega, E., Regules-Martínez, M.C., Leyva-Ramos, R., Ocampo-Pérez, R., Carranza-Alvarez, C., Single and competitive adsorption of Cd(II) and Pb(II) ions from aqueous solutions onto industrial chili seeds (Capsicum annuum) waste (2017) Sustain Environ Res, 27, pp. 61-69
dc.relation.referencesMendoza-Castillo, D.I., Elizabeth-Ávila, H.E., (2017) Adsorption processes for water treatment and purication, , (eds), Springer, Amsterdam
dc.relation.referencesMorosanu, I., Teodosiu, C., Paduraru, C., Biosorption of lead ions from aqueous effluents by rapeseed biomass (2017) N Biotechnol A, 39, pp. 110-124. , COI: 1:CAS:528:DC%2BC28XhsVeltrrL
dc.relation.referencesMoyo, M., Guyo, U., Mawenyiyo, G., Zinyama, N.P., Nyamunda, B.C., Marula seed husk (Sclerocarya birrea) biomass as a low cost biosorbent for removal of Pb(II) and Cu(II) from aqueous solution (2015) J Ind Eng Chem, 27, pp. 126-132
dc.relation.referencesNayara, T., De Souza, V., Maria, S., Adsorption of basic dyes onto activated carbon: experimental and theoretical investigation of chemical reactivity of basic dyes using DFT-based descriptors (2018) Appl Surf Sci, 448, pp. 662-670
dc.relation.referencesOcampo-Perez, R., Padilla-Ortega, E., Medellin-Castillo, N.A., Coronado-Oyarvide, P., Aguilar-Madera, C.G., Segovia-Sandoval, S.J., Flores-Ramírez, R., Parra-Marfil, A., Synthesis of biochar from chili seeds and its application to remove ibuprofen from water. Equilibrium and 3D modeling (2019) Sci Total Environ, 655, pp. 1397-1408
dc.relation.referencesÖzcan, A., Özcan, A.S., Tunali, S., Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of copper(II) ions onto seeds of Capsicum annuum (2005) J Hazard Mater, 124, pp. 200-208
dc.relation.referencesÖzcan, A.S., Özcan, A., Tunali, S., Akar, T., Kiran, I., Gedikbey, T., Adsorption potential of lead(II) ions from aqueous solutions onto Capsicum annuum seeds (2007) Sep Sci Technol, 42, pp. 137-151
dc.relation.referencesPadilla-Ortega, E., Leyva-Ramos, R., Flores-Cano, J.V., Binary adsorption of heavy metals from aqueous solution onto natural clays (2013) Chem Eng J, 225, pp. 535-546
dc.relation.referencesPagnanelli, F., Esposito, A., Toro, L., Vegliò, F., Metal speciation and pH effect on Pb, Cu, Zn and Cd biosorption onto Sphaerotilus natans: Langmuir-type empirical model (2003) Water Res, 37, pp. 627-633
dc.relation.referencesPark, J., Sik, Y., Kim, S., Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions (2016) Chemosphere, 142, pp. 77-83. , COI: 1:CAS:528:DC%2BC2MXhtVejtr3F
dc.relation.referencesPehlivan, E., Altun, T., Parlayıcı, S., Utilization of barley straws as biosorbents for Cu2+ and Pb2+ ions (2009) J Hazard Mater J, 164, pp. 982-986
dc.relation.referencesRamirez, A., Ocampo, R., Giraldo, S., Padilla, E., Flórez, E., Acelas, N., Removal of Cr (VI) from an aqueous solution using an activated carbon obtained from teakwood sawdust: kinetics, equilibrium, and density functional theory calculations (2020) J Environ Chem Eng, 8, p. 103702
dc.relation.referencesRiaz, M., Nadeem, R., Hanif, M.A., Ansari, T.M., Rehman, K.U., Pb(II) biosorption from hazardous aqueous streams using Gossypium hirsutum (Cotton) waste biomass (2009) J Hazard Mater, 161, pp. 88-94
dc.relation.referencesRonda, A., Bl, G., Bachs, N.M., Copper biosorption in the presence of lead onto olive stone and pine bark in batch and continuous systems Alicia (2013) Environ Prog Sustain Energy, 33, pp. 192-204
dc.relation.referencesRonda, A., Martín-Lara, M.A., Dionisio, E., Blázquez, G., Calero, M., Effect of lead in biosorption of copper by almond shell (2013) J Taiwan Inst Chem Eng, 44, pp. 466-473
dc.relation.references(2017) Planeación agrícola Nacional 2017-2030: Chiles Y Pimientos Mexicanos
dc.relation.referencesSenthilkumar, G., Murugappan, A., Multicomponent adsorption isotherm studies on removal of multi heavy metal ions in MSW leachate using fly ash (2015) Int J Eng Res Technol, 8, pp. 58-66
dc.relation.referencesShan, R., Shi, Y., Gu, J., Wang, Y., Yuan, H., Single and competitive adsorption affinity of heavy metals toward peanut shell-derived biochar and its mechanisms in aqueous systems (2020) Chin J Chem Eng, 28, pp. 1375-1383
dc.relation.referencesSheng, P.X., Ting, Y.P., Chen, J.P., Hong, L., Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms (2004) J Colloid Interface Sci, 275, pp. 131-141
dc.relation.referencesTaşar, Ş., Kaya, F., Özer, A., Biosorption of lead(II) ions from aqueous solution by peanut shells: equilibrium, thermodynamic and kinetic studies (2014) J Environ Chem Eng, 2, pp. 1018-1026
dc.relation.references(2020) Thermo Scientific XPS Simplied, , https://xpssimplified.com/periodictable.php, Thermo Scientific (n.d.), . Accessed Feb-March
dc.relation.referencesTunali Akar, S., Gorgulu, A., Akar, T., Celik, S., Decolorization of Reactive Blue 49 contaminated solutions by Capsicum annuum seeds: batch and continuous mode biosorption applications (2011) Chem Eng J, 168, pp. 125-133
dc.relation.referencesUslu, G., Tanyol, M., Equilibrium and thermodynamic parameters of single and binary mixture biosorption of lead (II) and copper (II) ions onto Pseudomonas putida: effect of temperature (2006) J Hazard Mater, 135, pp. 87-93
dc.relation.referencesVázquez, G., Calvo, M., Sonia Freire, M., González-Alvarez, J., Antorrena, G., Chestnut shell as heavy metal adsorbent: optimization study of lead, copper and zinc cations removal (2009) J Hazard Mater, 172, pp. 1402-1414
dc.relation.referencesVerma, C., Olasunkanmi, L.O., Bahadur, I., Lgaz, H., Quraishi, M.A., Haque, J., Sherif, E.S.M., Ebenso, E.E., Experimental, density functional theory and molecular dynamics supported adsorption behavior of environmental benign imidazolium based ionic liquids on mild steel surface in acidic medium (2019) J Mol Liq, 273, pp. 1-15. , COI: 1:CAS:528:DC%2BC1cXhvVOhsbfJ
dc.relation.referencesVieira, R.S., Lisa, M., Oliveira, M., Copper, mercury and chromium adsorption on natural and crosslinked chitosan films: an XPS investigation of mechanism (2011) Colloids Surfaces A Physicochem Eng Asp, 374, pp. 108-114
dc.relation.referencesWang, S., Vincent, T., Faur, C., Guibal, E., Modeling competitive sorption of lead and copper ions onto alginate and greenly prepared algal-based beads (2017) Bioresour Technol, 231, pp. 26-35
dc.relation.referencesWang, F., Yu, J., Zhang, Z., Xu, Y., Chi, R.A., An amino-functionalized ramie stalk-based adsorbent for highly effective Cu2+ removal from water: adsorption performance and mechanism (2018) Process Saf Environ Prot, 117, pp. 511-522
dc.relation.referencesWang, F., Li, J., Su, Y., Li, Q., Gao, B., Yue, Q., Zhou, W., Adsorption and recycling of Cd (II) from wastewater using straw cellulose hydrogel beads (2019) J Ind Eng Chem, 80, pp. 361-369. , COI: 1:CAS:528:DC%2BC1MXhsF2rurfF
dc.relation.referencesWu, S., Wang, F., Yuan, H., Fabrication of xanthate-modified chitosan/poly(N-isopropylacrylamide) composite hydrogel for the selective adsorption of Cu(II), Pb(II) and Ni(II) metal ions (2018) Chem Eng Res Des, 9, pp. 197-210
dc.relation.referencesYuan, L., Yan, M., Huang, Z., He, K., Zeng, G., Chen, A., Hu, L., Chen, G., Influences of pH and metal ions on the interactions of oxytetracycline onto nano-hydroxyapatite and their co-adsorption behavior in aqueous solution (2019) J Colloid Interface Sci, 541, pp. 01-113
dc.relation.referencesYuvaraja, G., Krishnaiah, N., Venkata, M., Biosorption of Pb (II) from aqueous solution by Solanum melongena leaf powder as a low-cost biosorbent prepared from agricultural waste (2014) Colloids Surf B: Biointerfaces, 114, pp. 75-81. , COI: 1:CAS:528:DC%2BC3sXitVWmsr%2FO
dc.relation.referencesZendelska, A., Golomeova, M., Golomeov, B., Krstev, B., Effect of competing cations (Cu, Zn, Mn, Pb) adsorbed by zeolite bearing tuff from Macedonia (2018) Nat Environ Pollut Technol, 17, pp. 21-24. , COI: 1:CAS:528:DC%2BC1cXisVOqs7vL
dc.relation.referencesZhan, X., Wang, L., Xu, T., The regionally dominant biomass (leaves of F. virens) selectively adsorb lead from municipal solid waste incineration fl y ash pickling wastewater (2019) Colloids Surfaces A, 577, pp. 523-531. , COI: 1:CAS:528:DC%2BC1MXhtFOhsbvO
dc.relation.referencesZhang, C., Wang, W., Duan, A., Zeng, G., Huang, D., Lai, C., Tan, X., Yang, Y., Adsorption behavior of engineered carbons and carbon nanomaterials for metal endocrine disruptors: experiments and theoretical calculation (2019) Chemosphere, 222, pp. 184-194
dc.relation.referencesZhu, Y., Hu, J., Wang, J., Competitive adsorption of Pb(II), Cu(II) and Zn(II) onto xanthate-modified magnetic chitosan (2012) J Hazard Mater, 221-222, pp. 155-161
dc.relation.referencesZulfiqar Ali, S., Athar, M., Salman, M., Imran Din, M., Simultaneous removal of Pb(II), Cd(II) and Cu(II) from aqueous solutions by adsorption on Triticum aestivum - a green approach (2017) Hydrol Curr Res, 2, pp. 4-11
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem