Mostrar el registro sencillo del ítem

dc.creatorLópez J.E.
dc.creatorBuiles S.
dc.creatorHeredia Salgado M.A.
dc.creatorTarelho L.A.C.
dc.creatorArroyave C.
dc.creatorAristizábal A.
dc.creatorChavez E.
dc.date2020
dc.date.accessioned2021-02-05T14:57:52Z
dc.date.available2021-02-05T14:57:52Z
dc.identifier.issn19327447
dc.identifier.urihttp://hdl.handle.net/11407/5914
dc.descriptionBiochars have been shown as promising materials for cadmium remediation. However, the different precursors and the pyrolysis process operating conditions can yield very different surface functional groups, and as a result, different cadmium sorption mechanisms can be observed in biochars. Herein we present the results of cadmium sorption on biochars produced from the pyrolysis of different agro-residues, namely, coffee husk, quinoa straw, and oil palm kernel shell. The adsorption isotherms were used to determine the influence of the biochar's physicochemical characteristics to their sorption behavior. The biochars prepared from quinoa residues showed much higher cadmium uptakes than the other biochars. The concentration of base cations was found to be a critical factor for cadmium sorption. Although the quinoa biochars presented large uptakes, it was found that base cations were supported on the biochars and could be removed by leaching. Results from this study suggest that concentration of base cations on biochars could be used as predictors of the biochar capabilities for the removal of cadmium in aqueous solution. Copyright © 2020 American Chemical Society.
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85089280277&doi=10.1021%2facs.jpcc.0c02216&partnerID=40&md5=1b13fd14cc8f7905158d219f8eea8c05
dc.sourceJournal of Physical Chemistry C
dc.titleAdsorption of Cadmium Using Biochars Produced from Agro-Residues
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambientalspa
dc.identifier.doi10.1021/acs.jpcc.0c02216
dc.subject.keywordCadmiumeng
dc.subject.keywordPalm oileng
dc.subject.keywordPositive ionseng
dc.subject.keywordPyrolysiseng
dc.subject.keywordSorptioneng
dc.subject.keywordCritical factorseng
dc.subject.keywordDifferent precursorseng
dc.subject.keywordOperating conditioneng
dc.subject.keywordPhysicochemical characteristicseng
dc.subject.keywordPyrolysis processeng
dc.subject.keywordSorption behaviorseng
dc.subject.keywordSorption mechanismeng
dc.subject.keywordSurface functional groupseng
dc.subject.keywordChemicals removal (water treatment)eng
dc.relation.citationvolume124
dc.relation.citationissue27
dc.relation.citationstartpage14592
dc.relation.citationendpage14602
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationLópez, J.E., Environmental Engineering Faculty, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationBuiles, S., Departamento de Ingeniería de Procesos, Universidad EAFIT, Carrera 49 No. 7 sur-50, Medellín, 050022, Colombia
dc.affiliationHeredia Salgado, M.A., Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, 3810-193, Portugal
dc.affiliationTarelho, L.A.C., Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, 3810-193, Portugal
dc.affiliationArroyave, C., Environmental Engineering Faculty, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationAristizábal, A., Departamento de Ingeniería de Procesos, Universidad EAFIT, Carrera 49 No. 7 sur-50, Medellín, 050022, Colombia
dc.affiliationChavez, E., Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
dc.relation.referencesShahid, M., Dumat, C., Khalid, S., Niazi, N.K., Antunes, P.M.C., de Voogt, P., Cadmium Bioavailability, Uptake, Toxicity and Detoxification in Soil-Plant System (2017) Reviews of Environmental Contamination and Toxicology, 241, pp. 73-137. , In
dc.relation.referencesSpringer International Publishing: Cham, Switzerland, Vol
dc.relation.referencesAli, A., Ahmed, A., Gad, A., Chemical and microstructural analyses for heavy metals removal from water media by ceramic membrane filtration (2017) Water Sci. Technol., 75 (2), pp. 439-450
dc.relation.referencesCardoso, S.P., Azenha, I.S., Lin, Z., Portugal, I., Rodrigues, A.E., Silva, C.M., Experimental measurement and modeling of ion exchange equilibrium and kinetics of cadmium (II) solutions over microporous stannosilicate AV-6 (2016) Chem. Eng. J. (Amsterdam, Neth.), 295, pp. 139-151
dc.relation.referencesBhadrinarayana, N.S., Basha, C.A., Anantharaman, N., Electrochemical Oxidation of Cyanide and Simultaneous Cathodic Removal of Cadmium Present in the Plating Rinse Water (2007) Ind. Eng. Chem. Res., 46 (20), pp. 6417-6424
dc.relation.referencesKim, H.S., Seo, B.-H., Kuppusamy, S., Lee, Y.B., Lee, J.-H., Yang, J.-E., Owens, G., Kim, K.-R., A DOC coagulant, gypsum treatment can simultaneously reduce As, Cd and Pb uptake by medicinal plants grown in contaminated soil (2018) Ecotoxicol. Environ. Saf., 148, pp. 615-619
dc.relation.referencesBailey, S.E., Olin, T.J., Bricka, R.M., Adrian, D.D., A review of potentially low-cost sorbents for heavy metals (1999) Water Res., 33 (11), pp. 2469-2479
dc.relation.referencesBoudrahem, F., Soualah, A., Aissani-Benissad, F., Pb(II) and Cd(II) Removal from Aqueous Solutions Using Activated Carbon Developed from Coffee Residue Activated with Phosphoric Acid and Zinc Chloride (2011) J. Chem. Eng. Data, 56 (5), pp. 1946-1955
dc.relation.referencesBožić, D., Stanković, V., Gorgievski, M., Bogdanović, G., Kovačević, R., Adsorption of heavy metal ions by sawdust of deciduous trees (2009) J. Hazard. Mater., 171 (13), pp. 684-692
dc.relation.referencesNayak, A., Bhushan, B., Gupta, V., Sharma, P., Chemically activated carbon from lignocellulosic wastes for heavy metal wastewater remediation: Effect of activation conditions (2017) J. Colloid Interface Sci., 493, pp. 228-240
dc.relation.referencesAguayo-Villarreal, I.A., Bonilla-Petriciolet, A., Muñiz-Valencia, R., Preparation of activated carbons from pecan nutshell and their application in the antagonistic adsorption of heavy metal ions (2017) J. Mol. Liq., 230, pp. 686-695
dc.relation.referencesRashidi, N.A., Yusup, S., A review on recent technological advancement in the activated carbon production from oil palm wastes (2017) Chem. Eng. J. (Amsterdam, Neth.), 314, pp. 277-290
dc.relation.referencesFiol, N., Villaescusa, I., Martínez, M., Miralles, N., Poch, J., Serarols, J., Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste (2006) Sep. Purif. Technol., 50 (1), pp. 132-140
dc.relation.referencesAkhtar, A., Krepl, V., Ivanova, T., A Combined Overview of Combustion, Pyrolysis, and Gasification of Biomass (2018) Energy Fuels, 32 (7), pp. 7294-7318
dc.relation.referencesSalgado, M.A.H., Tarelho, L.A.C., Matos, A., Robaina, M., Narváez, R., Peralta, M.E., Thermoeconomic analysis of integrated production of biochar and process heat from quinoa and lupin residual biomass (2018) Energy Policy, 114, pp. 332-341
dc.relation.referencesSalgado, M.A.H., Tarelho, L.A., Matos, A., Analysis of Combined Biochar and Torrefied Biomass Fuel Production as Alternative for Residual Biomass Valorization Generated in Small-Scale Palm Oil Mills (2020) Waste Biomass Valorization, 11 (1), pp. 343-356
dc.relation.referencesNeves, D., Thunman, H., Matos, A., Tarelho, L., Gómez-Barea, A., Characterization and prediction of biomass pyrolysis products (2011) Prog. Energy Combust. Sci., 37 (5), pp. 611-630
dc.relation.referencesGalinato, S.P., Yoder, J.K., Granatstein, D., The economic value of biochar in crop production and carbon sequestration (2011) Energy Policy, 39 (10), pp. 6344-6350
dc.relation.referencesInyang, M.I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., Pullammanappallil, P., Cao, X., A review of biochar as a low-cost adsorbent for aqueous heavy metal removal (2016) Crit. Rev. Environ. Sci. Technol., 46 (4), pp. 406-433
dc.relation.referencesChen, T., Zhou, Z., Han, R., Meng, R., Wang, H., Lu, W., Adsorption of cadmium by biochar derived from municipal sewage sludge: Impact factors and adsorption mechanism (2015) Chemosphere, 134, pp. 286-293
dc.relation.referencesHarvey, O.R., Herbert, B.E., Rhue, R.D., Kuo, L.-J., Metal Interactions at the Biochar-Water Interface: Energetics and Structure-Sorption Relationships Elucidated by Flow Adsorption Microcalorimetry (2011) Environ. Sci. Technol., 45 (13), pp. 5550-5556
dc.relation.referencesKlllç, M., Klrblylk, Ç., Çepelioǧullar, Ö., Pütün, A.E., Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis (2013) Appl. Surf. Sci., 283, pp. 856-862
dc.relation.referencesRees, F., Simonnot, M.O., Morel, J.L., Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase (2014) European Journal of Soil Science, 65 (1), pp. 149-161
dc.relation.referencesHouben, D., Evrard, L., Sonnet, P., Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar (2013) Chemosphere, 92 (11), pp. 1450-1457
dc.relation.referencesChi, T., Zuo, J., Liu, F., Performance and mechanism for cadmium and lead adsorption from water and soil by corn straw biochar (2017) Front. Environ. Sci. Eng., 11 (2), p. 15
dc.relation.referencesMelia, P.M., Busquets, R., Ray, S., Cundy, A.B., Agricultural wastes from wheat, barley, flax and grape for the efficient removal of Cd from contaminated water (2018) RSC Adv., 8 (70), pp. 40378-40386
dc.relation.referencesWang, R.-Z., Huang, D.-L., Liu, Y.-G., Zhang, C., Lai, C., Zeng, G.-M., Cheng, M., Luo, H., Investigating the adsorption behavior and the relative distribution of Cd2+ sorption mechanisms on biochars by different feedstock (2018) Bioresour. Technol., 261, pp. 265-271
dc.relation.referencesCui, X., Fang, S., Yao, Y., Li, T., Ni, Q., Yang, X., He, Z., Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar (2016) Sci. Total Environ., 562, pp. 517-525
dc.relation.referencesAhmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Ok, Y.S., Biochar as a sorbent for contaminant management in soil and water: A review (2014) Chemosphere, 99, pp. 19-33
dc.relation.references(2012) Guidelines for a Sustainable Production of Biochar, , European Biochar Foundation (EBC): Arbaz, Switzerland
dc.relation.referencesHeredia Salgado, M.A., Coba S, J.A., Tarelho, L.A.C., Simultaneous production of biochar and thermal energy using palm oil residual biomass as feedstock in an auto-thermal prototype reactor (2020) J. Cleaner Prod., 266, p. 121804
dc.relation.referencesQi, F., Dong, Z., Lamb, D., Naidu, R., Bolan, N.S., Ok, Y.S., Liu, C., Semple, K.T., Effects of acidic and neutral biochars on properties and cadmium retention of soils (2017) Chemosphere, 180, pp. 564-573
dc.relation.referencesDenyes, M.J., Parisien, M.A., Rutter, A., Zeeb, B.A., Physical, chemical and biological characterization of six biochars produced for the remediation of contaminated sites (2014) J. Visualized Exp., (93), p. e52183
dc.relation.referencesSantamarina, J.C., Klein, K.A., Wang, Y.H., Prencke, E., Specific surface: determination and relevance (2002) Can. Geotech. J., 39 (1), pp. 233-241
dc.relation.referencesAristizábal, A., Perilla, G., Lara-Borrero, J.A., Diez, R., KrCl and XeCl excilamps and LP-Hg lamp for UV and UV/H2O2 decolourization of dyes in water (2020) Environ. Technol., 41 (2), pp. 238-250
dc.relation.referencesChen, J.P., (2012) Decontamination of Heavy Metals: Processes, Mechanisms, and Applications, , CRC Press
dc.relation.referencesBuiles, S., Sandler, S.I., Xiong, R., Isosteric Heats of Gas and Liquid Adsorption (2013) Langmuir, 29, pp. 10416-10422
dc.relation.referencesBonilla-Petriciolet, A., Mendoza-Castillo, D.I., Reynel-Ávila, H.E., (2017) Adsorption Processes for Water Treatment and Purification, , Springer
dc.relation.referencesGao, L.-Y., Deng, J.-H., Huang, G.-F., Li, K., Cai, K.-Z., Liu, Y., Huang, F., Relative distribution of Cd2+ adsorption mechanisms on biochars derived from rice straw and sewage sludge (2019) Bioresour. Technol., 272, pp. 114-122
dc.relation.referencesFan, Z., Zhang, Q., Li, M., Niu, D., Sang, W., Verpoort, F., Investigating the sorption behavior of cadmium from aqueous solution by potassium permanganate-modified biochar: quantify mechanism and evaluate the modification method (2018) Environ. Sci. Pollut. Res., 25 (9), pp. 8330-8339
dc.relation.referencesBuiles, S., López-Aranguren, P., Fraile, J., Vega, L.F., Domingo, C., Analysis of CO2 Adsorption in Amine-Functionalized Porous Silicas by Molecular Simulations (2015) Energy Fuels, 29 (6), pp. 3855-3862
dc.relation.referencesKim, P., Johnson, A.M., Essington, M.E., Radosevich, M., Kwon, W.-T., Lee, S.-H., Rials, T.G., Labbé, N., Effect of pH on surface characteristics of switchgrass-derived biochars produced by fast pyrolysis (2013) Chemosphere, 90 (10), pp. 2623-2630
dc.relation.referencesEssandoh, M., Kunwar, B., Pittman, C.U., Mohan, D., Mlsna, T., Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar (2015) Chem. Eng. J. (Amsterdam, Neth.), 265, pp. 219-227
dc.relation.referencesDomingues, R.R., Trugilho, P.F., Silva, C.A., Melo, I.C.N.A.d., Melo, L.C.A., Magriotis, Z.M., Sánchez-Monedero, M.A., Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits (2017) PLoS One, 12 (5), p. 0176884
dc.relation.referencesLehmann, J., Joseph, S., (2015) Biochar for Environmental Management: Science, Technology and Implementation, , Routledge
dc.relation.referencesTan, Z., Yuan, S., Hong, M., Zhang, L., Huang, Q., Mechanism of negative surface charge formation on biochar and its effect on the fixation of soil Cd (2020) J. Hazard. Mater., 384, p. 121370
dc.relation.referencesHernandez-Soriano, M.C., Kerré, B., Kopittke, P.M., Horemans, B., Smolders, E., Biochar affects carbon composition and stability in soil: a combined spectroscopy-microscopy study (2016) Sci. Rep., 6 (1), p. 25127
dc.relation.referencesGao, X., Peng, Y., Zhou, Y., Adeel, M., Chen, Q., Effects of magnesium ferrite biochar on the cadmium passivation in acidic soil and bioavailability for packoi (Brassica chinensis L.) (2019) J. Environ. Manage., 251, p. 109610
dc.relation.referencesBashir, S., Hussain, Q., Shaaban, M., Hu, H., Efficiency and surface characterization of different plant derived biochar for cadmium (Cd) mobility, bioaccessibility and bioavailability to Chinese cabbage in highly contaminated soil (2018) Chemosphere, 211, pp. 632-639
dc.relation.referencesKeiluweit, M., Nico, P.S., Johnson, M.G., Kleber, M., Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar) (2010) Environ. Sci. Technol., 44 (4), pp. 1247-1253
dc.relation.referencesLimousin, G., Gaudet, J.-P., Charlet, L., Szenknect, S., Barthes, V., Krimissa, M., Sorption isotherms: A review on physical bases, modeling and measurement (2007) Appl. Geochem., 22 (2), pp. 249-275
dc.relation.referencesCui, X., Hao, H., Zhang, C., He, Z., Yang, X., Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars (2016) Sci. Total Environ., 539, pp. 566-575
dc.relation.referencesXu, Y., Chen, B., Organic carbon and inorganic silicon speciation in rice-bran-derived biochars affect its capacity to adsorb cadmium in solution (2015) J. Soils Sediments, 15 (1), pp. 60-70
dc.relation.referencesSmolders, E., Mertens, J., Alloway, B.J., Cadmium (2013) Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability, pp. 283-311. , In
dc.relation.referencesSpringer: Dordrecht, The Netherlands
dc.relation.referencesZhang, F., Wang, X., Yin, D., Peng, B., Tan, C., Liu, Y., Tan, X., Wu, S., Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes) (2015) J. Environ. Manage., 153, pp. 68-73
dc.relation.referencesIqbal, M., Saeed, A., Zafar, S.I., FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste (2009) J. Hazard. Mater., 164 (1), pp. 161-171
dc.relation.referencesSewwandi, B.G.N., Vithanage, M., Wijesekara, S.S.R.M.D.H.R., Mowjood, M.I.M., Hamamoto, S., Kawamoto, K., Adsorption of Cd(II) and Pb(II) onto Humic Acid-Treated Coconut (Cocos nucifera) Husk (2014) J. Hazard., Toxic Radioact. Waste, 18 (2), p. 04014001
dc.relation.referencesXu, X., Cao, X., Zhao, L., Wang, H., Yu, H., Gao, B., Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar (2013) Environ. Sci. Pollut. Res., 20 (1), pp. 358-368
dc.relation.referencesDoumer, M.E., Rigol, A., Vidal, M., Mangrich, A.S., Removal of Cd, Cu, Pb, and Zn from aqueous solutions by biochars (2016) Environ. Sci. Pollut. Res., 23 (3), pp. 2684-2692
dc.relation.referencesCheng, Q., Huang, Q., Khan, S., Liu, Y., Liao, Z., Li, G., Ok, Y.S., Adsorption of Cd by peanut husks and peanut husk biochar from aqueous solutions (2016) Ecological Engineering, 87, pp. 240-245
dc.relation.referencesLin, Y., Munroe, P., Joseph, S., Henderson, R., Ziolkowski, A., Water extractable organic carbon in untreated and chemical treated biochars (2012) Chemosphere, 87 (2), pp. 151-157
dc.relation.referencesXu, M., Wu, J., Luo, L., Yang, G., Zhang, X., Peng, H., Yu, X., Wang, L., The factors affecting biochar application in restoring heavy metal-polluted soil and its potential applications (2018) Chem. Ecol., 34 (2), pp. 177-197
dc.relation.referencesBuiles, S., Vega, L.F., Effect of Immobilized Amines on the Sorption Properties of Solid Materials: Impregnation versus Grafting (2013) Langmuir, 29 (1), pp. 199-206
dc.relation.referencesEl-Sheikh, A.H., Al-Salamin, R.M., Alshamaly, H.S., Tahboub, D.a.M., Al-Degs, Y.S., Fasfous, I.I., Al-Hashimi, N.N., Abdelghani, J.I., Effect of varying deposition conditions of magnetite on sawdust on the physiochemical properties of the prepared composites (2019) J. Environ. Chem. Eng., 7 (6), p. 103497
dc.relation.referencesStavropoulos, G.G., Precursor materials suitability for super activated carbons production (2005) Fuel Process. Technol., 86 (11), pp. 1165-1173
dc.relation.referencesReed, B.E., Matsumoto, M.R., Modeling Cadmium Adsorption by Activated Carbon Using the Langmuir and Freundlich Isotherm Expressions (1993) Sep. Sci. Technol., 28 (1314), pp. 2179-2195
dc.relation.referencesYuan, J.-H., Xu, R.-K., Zhang, H., The forms of alkalis in the biochar produced from crop residues at different temperatures (2011) Bioresour. Technol., 102 (3), pp. 3488-3497
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem