Mostrar el registro sencillo del ítem

dc.contributor.advisorMorales Mira, Gladis Estela
dc.contributor.advisorMarrugo Negrete, Jose Luis
dc.contributor.advisorMontoya Jaramillo, Luis Javier
dc.contributor.authorGutiérrez Mosquera, Harry
dc.coverage.spatialLat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degreeseng
dc.coverage.spatialLat: 06 15 00 N  degrees minutes  Lat: 6.2500  decimal degreesLong: 075 36 00 W  degrees minutes  Long: -75.6000  decimal degrees
dc.date.accessioned2021-06-01T15:42:49Z
dc.date.available2021-06-01T15:42:49Z
dc.date.created2021-03-24
dc.identifier.otherT 0091 2021
dc.identifier.urihttp://hdl.handle.net/11407/6392
dc.descriptionEl mercurio (Hg) es uno de los contaminantes ambientales más peligrosos que amenaza la salud de los ecosistemas acuáticos y las poblaciones humanas en muchas regiones del mundo. La minería de oro artesanal y a pequeña escala (ASGM) a menudo libera el Hg (aprox. 1400 Mg/año) principalmente en su forma elemental (Hg0), lo que conduce a la contaminación del suelo y los sistemas acuáticos adyacentes (ríos, lagos, embalses/reservorios). Por ello, pozas de extracción de oro abandonados en los antiguos sitios de minería del oro (AGMP) son particularmente susceptibles a presentar altas concentraciones de Hg en sus compartimentos ambientales. En estos sistemas, los sedimentos actúan como importantes sumideros/fuentes de Hg; pero, algunas variaciones en las condiciones químicas o físicas en ellos (por ejemplo, pH, Eh, OM, textura, Fe, S, Al) provocarán directamente cambios en la distribución, solubilidad, biodisponibilidad y toxicidad de los metales. Por ejemplo, el Hg puede biotransformarse en metilmercurio (MeHg), una poderosa neurotoxina que se bioacumula y biomagnifica en toda la red trófica. Además, se debe resaltar que en muchos países las AGMPs corresponden a lugares de pesca frecuentes para las comunidades locales. En consecuencia, es probable que las AGMPs sirvan de enlace con las poblaciones humanas que dependen directamente del consumo de pescado de las pozas como fuente primaria de proteínas, lo que también podría conducir a efectos negativos crónicos en la salud de los habitantes locales.
dc.description.abstractMercury (Hg) is one of the most dangerous pollutants that threatens the health of aquatic ecosystems and human populations in many regions around the world. Artisanal and small-scale gold mining (ASGMs) often releases Hg (approx. 1400 Mg/year) primarily in its elemental form (Hg0), which leads to contamination of the soil and adjacent aquatic systems (rivers, lakes, reservoirs/ponds). Therefore, the abandoned gold mining ponds (AGMPs) at the former gold mining sites are particularly susceptible to high concentrations of Hg in their environmental compartments. In these systems, sediments act as important sinks/sources of Hg. However, some variations in the chemical or physical conditions of the sediments (eg., pH, Eh, OM, texture, Fe, S, Al) will directly cause changes in the distribution, solubility, bioavailability and toxicity of the metals. For example, Hg can be biotransformed to methylmercury (MeHg), a powerful neurotoxin that bioaccumulates and biomagnifies throughout the trophic network. Additionally, in many countries, the AGMPs correspond to common fishing sites for local communities. Consequently, the AGMPs is likely to serve as a bond with the human populations who directly depend on the consumption of fish from the ponds as a primary source of protein, and this process also leads to chronic negative effects on the health of the local habitants.
dc.format.extentp. 1-221
dc.format.mediumElectrónico
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad de Medellínspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0
dc.subjectMercurio
dc.subjectMinas de oro abandonadas
dc.subjectRiesgo para la salud humana
dc.subjectMatrices agua-sedimentos-Macrofitas-peces
dc.titleDistribución multicompartimental y fraccionamiento químico del mercurio en pozas de sedimentación de minas de aluvión abandonadas en un área aurífera del departamento del Chocó
dc.rights.accessrightsinfo:eurepo/semantics/openAccess
dc.publisher.programDoctorado en Ingeniería
dc.subject.lembContaminación del agua
dc.subject.lembContaminación del suelo
dc.subject.lembCuencas sedimentarias
dc.subject.lembMercurio
dc.subject.lembMinas - Impacto ambiental - Chocó (Colombia)
dc.subject.lembMinas de oro - Chocó (Colombia)
dc.subject.lembTierras de aluvión
dc.subject.keywordMercury
dc.subject.keywordWater-sediment-macrophyte-fish matrices
dc.subject.keywordAbandoned gold mining
dc.subject.keywordHuman health risk
dc.relation.citationstartpage1
dc.relation.citationendpage221
dc.audienceComunidad Universidad de Medellín
dc.publisher.facultyFacultad de Ingenierías
dc.publisher.placeMedellín
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.relation.references"Abrahim, G. M. S., & Parker, R. J., 2008. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136(1-3), 227-238. http://doi.org/10.1007/s10661-007-9678-2
dc.relation.referencesAli, J., Kazi, T. G., Afridi, H. I., Baig, J. A., Arain, M. S., Naeemullah, & Farooq, S., 2016. The evaluation of sequentially extracted mercury fractions in Thar coal samples by using different extraction schemes. International Journal of Coal Geology, 156, 50-58. http://doi.org/10.1016/j.coal.2016.02.003
dc.relation.referencesAl-Majed, N. B., & Preston, M. R., 2000. Factors influencing the total mercury and methyl mercury in the hair of the fishermen of Kuwait. Environmental Pollution, 109(2), 239-250. http://doi.org/10.1016/S0269-7491(99)00261-4
dc.relation.referencesAlmeida, R. De, Bernardi, J. V. E., Oliveira, R. C., Carvalho, D. P. de, Manzatto, A. G., Lacerda, L. D. De, & Bastos, W. R., 2014. Flood pulse and spatial dynamics of mercury in sediments in Puruzinho lake, Brazilian Amazon. Acta Amazonica, 44(1), 99-105. http://doi.org/10.1590/S0044-59672014000100010
dc.relation.referencesAlmeida, I. L. S., Oliveira, M. D. R., Silva, J. B. B., & Coelho, N. M. M. (2016). Suitable extraction of soils and sediments for mercury species and determination combined with the cold vapor generation atomic absorption spectrometry technique. Microchemical Journal, 124, 326-330. http://doi.org/10.1016/j.microc.2015.09.007
dc.relation.referencesAlvarez, S., Kolok, A., Jimenez, L., Granados, C., 2012. Mercury concentrations in muscle and liver tissue of fish from marshes along the Magdalena river, Colombia. Bulletin of environmental contamination and toxicology, 89: 836-40. https://doi.org/10.1007/s00128-012-0782-9
dc.relation.referencesAmyot, M., Morel, F.M.M., Ariya, P.A., 2005. Dark oxidation of dissolved and liquid elemental mercury in aquatic environments. Environ. Sci. Technol. 39, 110-114.
dc.relation.referencesAnsari, A.A., Khan, F.A., 2011. Nutrients phytoremediation of eutrophic waters using Eichhornia crassipes in a controlled environment. International Journal of Environmental Science, 2, 241-246.
dc.relation.referencesAnsari, A.A., Naeem, M., Gill, S.S., AlZuaibr, F.M., 2020. Phytoremediation of contaminated waters: An eco-friendly technology based on aquatic macrophytes application. The Egyptian Journal of Aquatic Research, In press. https://doi.org/10.1016/j.ejar.2020.03.002
dc.relation.referencesAnual, Z. F., Maher, W., Krikowa, F., Hakim, L., Ahmad, N. I., & Foster, S., 2018. Mercury and risk assessment from consumption of crustaceans, cephalopods and fish from West Peninsular Malaysia. Microchemical Journal, 140(April), 214-221. http://doi.org/10.1016/j.microc.2018.04.024
dc.relation.referencesAppleton, J.D., Williams, T.M., Breward, N., Apostol, A., Miguel, J., Miranda, C. (1999). Mercury contamination associated with artisanal gold mining on the island of Mindanao, the Philippines. The Science of the Total Environment. 228: 95-109.
dc.relation.referencesArmstrong, F.A.J., 1979, Effects of mercury compounds on fish, in: The Biogeochemistry of Mercury in the Environment, J.O. Nriagu, ed., New York, Elsevier/North Holland Biomedical Press, pp. 657-670.
dc.relation.referencesAstera, M., 2010. Soil CEC explained: understanding, measuring and using cation exchange capacity for nutritious crops. Acres USA 40(3): 25-28.
dc.relation.referencesATSDR, 1997. Toxicological profile for mercury. Draft for public comment (update). Prepared by Research Triangle Institute under Contract No. 205-93-0606. Prepared for U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, August.
dc.relation.referencesATSDR, A. for T. S. and D. R. 2015. Priority List of Hazardous Substances. Retrieved August 15, 2016, from http://www.atsdr.cdc.gov/spl/
dc.relation.referencesAvigliano, E., Monferran, M.V., Sánchez, S., Wunderlin, D.A., Gastaminza, J., Volpedo, A.V., 2019. Distribution and bioaccumulation of 12 trace elements in water, sediment and tissues of the main fishery from different environments of the La Plata basin (South America): Risk assessment for human consumption. Chemosphere, 236: 124394. https://doi.org/10.1016/j.chemosphere.2019.124394
dc.relation.referencesAtibu, E. K., Devarajan, N., Laffite, A., Giuliani, G., Salumu, J. A., Muteb, R. C., Poté, J., 2016. Chemie der Erde Assessment of trace metal and rare earth elements contamination in rivers around abandoned and active mine 160iges . The case of Lubumbashi River and Tshamilemba Canal , Katanga , Democratic Republic of the Congo. Chemie Der Erde, 76, 353-362.
dc.relation.referencesAustin, D., Scharf, R., Carroll, J., Enochs, M., 2016. Suppression of hypolimnetic methylmercury accumulation by liquid calcium nitrate amendment: Redox dynamics and fate of nitrate. Lake and Reservoir Management. 32(1), 61-73. https://doi.org/10.1080/10402381.2015.1121306
dc.relation.referencesAzevedo, L. S., Pestana, I. A., Rocha, A. R. M., Meneguelli-Souza, A. C., Lima, C. A. I., Almeida, M. G., Souza, C. M. M., 2018. Drought promotes increases in total mercury and methylmercury concentrations in fish from the lower Paraíba do Sul river, southeastern Brazil. Chemosphere, 202, 483-490. http://doi.org/10.1016/j.chemosphere.2018.03.059
dc.relation.referencesBagur, M. G., Morales, S., & López-Chicano, M., 2009. Evaluation of the environmental contamination at an abandoned mining site using multivariate statistical techniques-The Rodalquilar (Southern Spain) mining district. Talanta, 80(1), 377-384. http://doi.org/10.1016/j.talanta.2009.06.075
dc.relation.referencesBank, M.S., 2012. Mercury in the environment: pattern and process. 1st ed. University of California press.
dc.relation.referencesBarkay, T., Miller, S.M., Summers, A.O., 2003. Bacterial mercury resistance from atoms to ecosystems. Fems Microbiol. Rev. 27, 355-384.
dc.relation.referencesBastos, W.R., Dórea, J.G., Bernardi, J.V.E., Lauthartte, L.C., Mussy, M.H., Lacerda, L.D., Malm, O., 2015. Mercury in fish of the Madeira river (temporal and spatial assessment), Brazilian Amazon. Environmental Research, 140: 191-197. http://dx.doi.org/10.1016/j.envres.2015.03.029
dc.relation.referencesBastos, W., Dorea, J.G., Bernardi, J.V., Manzatto, A.G., Mussy, M.H., Lauthartte, L.C., Lacerda, L.D. Malm, O., 2016. Sex-related mercury bioaccumulation in fish from the Madeira River, Amazon. Environmental Research. 144: 73-80.
dc.relation.referencesBatzevich, V. A., 1995. Hair trace element analysis in human ecology studies. Sci. Total Environ., 164, 89-98.
dc.relation.referencesBeauvais-Flück, R., Slaveykova, V.I., Cosio, C., 2017. Cellular toxicity pathways of inorganic and methyl mercury in the green microalga chlamydomonas reinhardtii, Sci. Rep. 7: 1-12, https://doi.org/10.1038/s41598-017-08515-8
dc.relation.referencesBeauvais-Flück, R., Slaveykova, V.I., Skyllberg, U., Cosio, C., 2018. Molecular effects, speciation, and competition of inorganic and methyl mercury in the aquatic plant elodea nuttallii, Environ. Sci. Technol. 52: 8876-8884, https://doi.org/10. 1021/acs.est.8b02124.
dc.relation.referencesBeckers, F., Rinklebe, J., 2017. Cycling of mercury in the environment: sources, fate, and human health implications: a review. Crit. Rev. Environ. Sci. Technol. 47 (9), 693-794. https://doi.org/10.1016/j.enmm.2020.100283
dc.relation.referencesBenoit, J.M., Mason, R.P. and Gilmour, C.C., 1999. Estimation of mercury-sulfide speciation and bioavailability in sediment pore waters using octanol-water partitioning, Environ. Toxicol. Chem., 18, 2138-2141.
dc.relation.referencesBenoit, J.M., Gilmour, C.C., Heyes, A., Mason, R.P., Miller, C.L., 2002. Geochemical and biological controls over mercury production and degradation in aquatic systems. Biogeochemistry of Environmentally Important Trace Elements. ACS Symp. Ser. 835, 262-297. https://dx.doi.org/10.1021/bk-2003-0835.ch019
dc.relation.referencesBenoit, J., Gilmour, C.C., Heyes, A., Mason, R.P. and Miller, C., 2003. Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. In: Biogeochemistry of Environmentally Important Trace Elements, Chai, Y. and Braids, O.C. (eds.), ACS Symposium Series 835, American Chemical Society, Washington, DC., 262-297.
dc.relation.referencesBenoit, G., 2018. Mercury in dated sediment cores from coastal ponds of St Thomas, USVI. Marine Pollution Bulletin, 126, 535-539. https://doi.org/10.1016/j.marpolbul.2017.09.056
dc.relation.referencesBernaus, A., Gaona, X., van Ree, D., & Valiente, M., 2006. Determination of mercury in polluted soils surrounding a chlor-alkali plant. Direct speciation by X-ray absorption spectroscopy techniques and preliminary geochemical characterisation of the area. Analytica Chimica Acta, 565(1), 73-80. http://doi.org/10.1016/j.aca.2006.02.020
dc.relation.referencesBiester, H., Gosar, M., Müller, G., 1999. Mercury speciation in tailings of the Idrija mercury mine. Journal of Geochemical Exploration, 65: 195-204.
dc.relation.referencesBiester, H., Gosar, M., Covelli, S., 2000. Occurrence and fractionation of mercury species derived from dumped mining residues in sediments of the Idrija mining area. Environ. Sci. Technol., 34, 3330-3336. https://doi.org/10.1021/es991334v
dc.relation.referencesBiester, H., Muller, G., & Scholer, H. F., 2002. Binding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants. Science of the Total Environment, 284, 191-203. https://doi.org/10.1016/s0048-9697(01)00885-3
dc.relation.referencesBigham, G.N., Murray, K.J., Masue-Slowey, Y., Henry, E.A., 2016. Biogeochemical controls on methylmercury in soils and sediments: Implications for site management. Integrated Environmental Assessment and Management, 13(2), 249-263. https://doi.org/10.1002/ieam.1822
dc.relation.referencesBloom, N.S., 1989. Determination of Picogram Levels of Methylmercury by Aqueous Phase Ethylation, Followed by Cryogenic Gas-Chromatography with Cold Vapor Atomic Fluorescence Detection. Can J Fish Aquat Sci, 46(7): 1131-40.
dc.relation.referencesBloom, N.S., Gill, G. A., Cappellino, S., Dobbs, C., McShea, L., Driscoll, C., Mason, R., and Rudd, J., 1999. Speciation and cycling of mercury in Lavaca Bay, Texas, sediments, Environ. Sci. Technol., 33, 7.
dc.relation.referencesBloom, N.S., Preus, E., Katon, J., Hiltner, M., 2003. Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Anal. Chim. Acta, 479, 233-248. https://doi.org/10.1016/S0003-2670(02)01550-7
dc.relation.referencesBohn, H.L., McNeal, B.L., O'Connor, G.A., 2001. Soil chemistry, 3rd edn. Wiley, Toronto.
dc.relation.referencesBollen, A. Ã., Wenke, A., & Biester, H., 2008. Mercury speciation analyses in HgCl 2 - contaminated soils and groundwater - Implications for risk assessment and remediation strategies, 42, 91-100. http://doi.org/10.1016/j.watres.2007.07.011
dc.relation.referencesBose-O'Reilly, S., Drasch, G., Beinhoff, C., Rodrigues-Filho, S., Roider, G., Lettmeier, B., ? Siebert, U. (2010). Health assessment of artisanal gold miners in Indonesia. Science of the Total Environment, 408(4), 713-725. http://doi.org/10.1016/j.scitotenv.2009.10.070
dc.relation.referencesBoszke, L., Kowalski, A., Glosinska, G., Szarek, R., & Siepak, J., 2003. Environmental factors affecting speciation of mercury in the bottom sediments; an overview. Polish Journal of Environmental Studies, 12(1), 5-13.
dc.relation.referencesBoszke, L., G?osi?ska, G., & Siepak, J., 2002. Some Aspects of Speciation of Mercury in a Water Environment. Polish Journal of Environmental Studies, 11(4), 285-298.
dc.relation.referencesBoszke, L., Kowalski, A., & Siepak, J. 2004. Grain size partitioning of mercury in sediments of the Middle Odra River (Germany/Poland). Water, Air, and Soil Pollution, 159, 125-138. https://doi.org/10.1023/B:WATE.0000049171.22781.bd
dc.relation.referencesBoszke, L., Kowalski, A., Szczuci?ski, W., Rachlewicz, G., Lorenc, S., & Siepak, J., 2006. Assessment of mercury mobility and bioavailability by fractionation method in sediments from coastal zone inundated by the 26 December 2004 tsunami in Thailand. Environmental Geology, 51(4), 527-536. http://doi.org/10.1007/s00254-006-0349-3
dc.relation.referencesBouyoucos, G.J., 1962. Hydrometer method improved for making particle size analysis of soils. Agron. J., vol. 54: 464-465, 1962.
dc.relation.referencesBravo, A.G., Bouchet, S., Tolu, J., Björn, E., Mateos-Rivera, A., Bertilsson, S., 2017. Molecular composition of organic matter controls methylmercury formation in boreal lakes. Nat. Commun. 8, 142-155. https://doi.org/10.1038/ncomms14255
dc.relation.referencesBowles, K. C., Apte, S. C., Maher, W. A., Kawei, M., & Smith, R., 2001. Bioaccumulation and biomagnification of mercury in Lake Murray, Papua New Guinea. Canadian Journal of Fisheries and Aquatic Sciences, 58(5), 888-897. http://doi.org/10.1139/f01-042
dc.relation.referencesCampbell P., Lewis A., Chapman P., Luoma S., Stokes P., 1988. Biologically available metals in sediments. National Research Council of Canada (NRCC). Otawa, 298p.
dc.relation.referencesChatterjee, M., Canário, J., Sarkar, S.K., Branco, V., Godhantaraman, N., Bhattacharya, B.D., Bhattacharya, A., 2012. Biogeochemistry of mercury and methylmercury in sediment cores from Sundarban mangrove wetland, India-a UNESCO World Heritage Site. Environ Monit Assess. 184:5239-5254. http://doi.org/10.1007/s10661-011-2336-8
dc.relation.referencesChakraborty, P., Ramteke, D., & Chakraborty, S., 2015. Geochemical partitioning of Cu and Ni in mangrove sediments: Relationships with their bioavailability. Marine Pollution Bulletin, 93(1-2), 194-201. http://doi.org/10.1016/j.marpolbul.2015.01.016
dc.relation.referencesCallister S.M, Winfrey M.R, 1986. Microbial methylation of mercury in upper Wisconsin river sediments. Water Air Soil Pollut, 29: 453- 465.
dc.relation.referencesCarranza-Lopez, L., Caballero-Gallardo, K., Cervantes-Ceballos, L., Turizo-Tapia, A., Olivero-Verbel, J., 2019. Multicompartment Mercury Contamination in Major Gold Mining Districts at the Department of Bolivar, Colombia. Archives of Environmental Contamination and Toxicology, 76:640-649. https://doi.org/10.1007/s00244-019-00609-w
dc.relation.referencesCaricchia, A.M., Minervini, G., Soldati, P., Chiavarini, S., Ubaldi, C., Morabito, R., 1997. GC-ECD determination of methylmercury in sediment samples using a SPB-608 capillary column after alkaline digestion. Microchem. J. 55, 44-55. https://doi.org/10.1006/mchj.1996.1357
dc.relation.referencesCarmouze, J.P., Lucotte, M., Boudou, A., 2001. Le Mercure en Amazonie Rôle de l'homme et de l'environnement, Risques sanitaires. IRD Editions, Bondy. 494 pp. (in French).
dc.relation.referencesCarvalho, C.M.L., Chew, E.H., Hashemy, S.I., Lu, J., Holmgren, A., 2008. Inhibition of the humanthioredoxin system: a molecular mechanism of mercury toxicity, J. Biol. Chem. 283: 11913-11923, https://doi.org/10.1074/jbc.M710133200
dc.relation.referencesCastillo, A.M., 2013. Los retreros y la gente del río Condoto: minería y transformaciones socioambientales en Chocó, 1975- 2013. Tesis Maestría. Universidad de los Andes, Bogotá DC.
dc.relation.referencesCao, D., Chen, W., Xiang, Y., et al., 2021. The efficiencies of inorganic mercury bio-methylation by aerobic bacteria under different oxygen concentrations. Ecotoxicology and Environmental Safety, 207, 111538. https://doi.org/10.1016/j.ecoenv.2020.111538
dc.relation.referencesCesar, R., Egler, S., Polivanov, H., Castilhos, Z., & Rodrigues, A. P., 2011. Mercury, copper and zinc contamination in soils and fluvial sediments from an abandoned gold mining area in southern Minas Gerais State, Brazil. Environmental Earth Sciences, 64(1), 211- 222. http://doi.org/10.1007/s12665-010-0840-8
dc.relation.referencesCETEM, 1989. Relat6rio Anual do Projeto Pocone. Centr Tecnol Mineral, Rio de Janeiro, p. 287
dc.relation.referencesChakraborty, P., Ramteke, D., & Chakraborty, S. (2015). Geochemical partitioning of Cu and Ni in mangrove sediments: Relationships with their bioavailability. Marine Pollution Bulletin, 93(1-2), 194-201. http://doi.org/10.1016/j.marpolbul.2015.01.016
dc.relation.referencesChen, S.C., Sheu, Y.T., Surampalli, R.Y., Zhang, T.C., Kao, C.M., 2018. Application of microbial transformation to remediate Hg-contaminated water: strain isolation and laboratory microcosm study. J. Environ. Eng. 144 (7), 04018045. http://doi.org/10.1061/(ASCE)EE.1943-7870.0001385
dc.relation.referencesChen, X., Ji, H., Yang, W., Zhu, B., & Ding, H., 2016. Speciation and distribution of mercury in soils around gold mines located upstream of Miyun Reservoir, Beijing, China. Journal of Geochemical Exploration, 163, 1-9. http://doi.org/10.1016/j.gexplo.2016.01.015
dc.relation.referencesChiasson-Gould SA, Blais JM, Poulain AJ. 2014. Dissolved organic matter kinetically controls mercury bioavailability to bacteria. Environ Sci Technol, 48: 3153- 3161.
dc.relation.referencesChien LC, Hung TC, Choang KY, Yeh CY, Meng PJ, Shieh MJ, Han BC, 2002. Daily intake of TBT, Cu, Zn, Cd and As for fishermen in Taiwan. Sci Total Environ, 285(1):177-185
dc.relation.referencesChing, I. L., & Hongxiao, T., 1985. Chemical studies of aquatic pollution by heavy metals in China. In K. J. Irgolic & A. E. Martel (Eds.), Environmental inorganic chemistry (pp. 359-371). Deerfield Beach: VCH.
dc.relation.referencesClarkson, T.W., 2002. The three modern faces of mercury, Environ. Health Perspect. 110: 11-23, https://doi.org/10.1289/ehp.02110s111
dc.relation.referencesClarkson, T.W., Magos, L., 2006. The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 36, 609-662. https://doi.org/10.1080/10408440600845619
dc.relation.referencesCogua, R. del P. (2011). Estudio comparativo de mercurio a través de redes detritívoras y plantívoras en un estuario tropical. Tesis Doctoral, Universidad Nacional de Colombia.
dc.relation.referencesColmenares, G., 1979. Historia económica y social de Colombia. Popayán: una sociedad esclavista, 1600 - 1800. Bogotá, Colombia: Editorial La Carreta.
dc.relation.referencesCosio, C., Fluck, R., Regier, N., Slaveykova, V.I., 2014. Effects of macrophytes on the fate of mercury in aquatic systems. Environ. Toxicol. Chem. 33, 1225-1238.
dc.relation.referencesCoquery, M., Welbourn, P.M., 1995. The relationship between metal concentration and organic matter in sediments and metal concentration in the aquatic macrophyte Eriocaulon septangulare. Water Res. 29 (9), 2094-2102. https://doi.org/10.1016/0043-1354(95)00015-D
dc.relation.referencesCoquery, M., Cossa, D., Peretyazhko, T., Azemard, S., Charlet, L., 2003. Methylmer- cury formation in the anoxic waters of the Petit-Saut reservoir (French Guiana) and its spreading in the adjacent Sinnamary river. J. Phys. IV France 107 (1), 327-331. https://dx.doi.org/10.1051/jp4:20030308
dc.relation.referencesCordy, P., Veiga, M. M., Salih, I., Al-Saadi, S., Console, S., Garcia, O., Roeser, M., 2011. Mercury contamination from artisanal gold mining in Antioquia, Colombia: The world's highest per capita mercury pollution. Science of the Total Environment, 410-411, 154-160. http://doi.org/10.1016/j.scitotenv.2011.09.006
dc.relation.referencesCordy, P., Veiga, M., Crawford, B., Garcia, O., Gonzalez, V., Moraga, D., Wip, D., 2013. Characterization, mapping, and mitigation of mercury vapour emissions from artisanal mining gold shops. Environmental Research, 125, 82-91. http://doi.org/10.1016/j.envres.2012.10.015
dc.relation.referencesChadwick SP, Babiarz CL, Hurley JP, Armstrong DE. 2013. Importance of hypolimnetic cycling in aging of ""new"" mercury in a northern temperate lake. Sci Total Environ, 448: 176- 188.
dc.relation.referencesCrichton, R., 2019. Metals in the Environment. Chapter 23. A New Introduction to Molecular Structure and Function. Biological Inorganic Chemistry (Third Edition), 625-644. https://doi.org/10.1016/B978-0-12-811741-5.00023-0
dc.relation.referencesDaher, V. 1999. No rastro do mercúrio. Ciênc. Hoje 26: 46-48.
dc.relation.referencesDavidson, C.M., Urquhart, G.J., Ajmone-Marsan, F., Biasioli, M., Duarte, A., Diaz- Barrientos, E., 2006. Fractionation of potentially toxic elements in urban soils from five European cities by means of a harmonized sequential extraction procedure. Anal. Chim. Acta, 565, 63-72. https://doi.org/10.1016/j.aca.2006.02.014
dc.relation.referencesDavis, A. M., Bloom, N.S., Hee, S.S., 1997. The environmental geochemistry and bioaccessibility of mercury in soils and sediments: a review. Risk analysis, 17:5. http://doi.org/10.1111/j.1539-6924.1997.tb00897.x
dc.relation.referencesDelaune, R.D., Jugsujinda, A., Devai, I., Patrickjr, W.H., 2004. Relationship of sediment redox conditions to methyl mercury in surface sediment of Louisiana Lakes. J. Environ. Sci. Health A 39, 1925-1933. https://doi.org/10.1081/ESE-120039365
dc.relation.referencesDeLaune, R., Jugsujinda, A., Devai, I., Patrick Jr, W., 2004. Relationship of sediment redox conditions to methyl mercury in surface sediment of Louisiana lakes. Environ. Sci. Health 39 (8), 1925-1933. https://doi.org/10.1081/ese-120039365
dc.relation.referencesde Paula Gutiérrez, B.F., Agudelo, C.A.R. Fish as bioindicators: coal and mercury pollution in Colombia's ecosystems. Environ Sci Pollut Res 27, 27541-27562 (2020). https://doi.org/10.1007/s11356-020-09159-4
dc.relation.referencesDerek R, Lovley D.R., Phillips E.J.P., 1986. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol, 51(4): 683- 689.
dc.relation.referencesDíaz, W. A., & Elcoro, S., 2009. Plantas Colonizadoras En Áreas Perturbadas Por La Minería En El Estado Bolívar, Venezuela. Acta Botánica Venezuelica, 32(2), 453-466.
dc.relation.referencesDíez, S., Bayona J., 2002. Determination of methylmercury in human hair by ethylation followed by headspace solid-phase microextraction-gas chromatography-cold-vapour atomic fluorescence spectrometry. Journal of Chromatography A, 963; 345-351.
dc.relation.referencesDíez, S., 2009. Human health effects of methylmercury exposure. Rev. Environ. Contam. Toxicol. 198, 111-132. https://doi.org/10.1007/978-0-387-09647-6
dc.relation.referencesDíez, S., Giaggio, R, 2018. Do biofilms affect the measurement of mercury by the DGT technique? Microcosm and field tests to prevent biofilm growth. Chemosphere, 210, 692-698. https://doi.org/10.1016/j.chemosphere.2018.07.047
dc.relation.referencesDong, A., Zhai, S., Louchouarn, P., Izon, G., Zhang, H., Jiang, X., 2018. The distribution and accumulation of mercury and methylmercury in surface sediments beneath the East China Sea. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-018-3880-3
dc.relation.referencesDonkor, A.K., Bonzongo, j.C., Nartey, V.K., Adotey, D.K., 2006. Mercury in different environmental compartments of the Para River Basin, Ghana. Science of the Total Environment. 368: 164-176.
dc.relation.referencesDriscoll, C., Mason, R., Chan, H., 2013. Mercury as a global pollutant: sources, pathways, and effects. Environ. Sci. Technol. 47, 4967-4983.
dc.relation.referencesDrott, A., Lambertsson, L., Björn, E, Skyllberg, U., 2007. Importance of dissolved neutral mercury sulfides for methyl mercury production in contaminated sediments. Environ Sci Technol, 41: 2270-2276.
dc.relation.referencesDural, M., Goksu, A., Ozak, A., 2007. Investigation of heavy metal levels in economically important fish species captured from the Tuzla lagoon. Food Chem. 102, 415-421.
dc.relation.referencesEhrlich, H.L., Newman, D.K., 2008. Geomicrobiology, fifth ed. CRC Press, Boca Raton, FL.
dc.relation.referencesErasmus, V.N., Iitembu, J.A., Hamutenya, S., Gamatham, J., 2019. Evidences of possible influences of methylmercury concentrations on condition factor and maturation of Lophius vomerinus (Cape monkfish). Marine Pollution Bulletin, 146, 33-38.
dc.relation.referenceshttps://doi.org/10.1016/j.marpolbul.2019.05.060
dc.relation.referencesEsdaile, L. J., & Chalker, J. M., 2018. The Mercury Problem in Artisanal and Small-Scale Gold Mining. Chemistry - A European Journal, 24(27), 6905-6916. http://doi.org/10.1002/chem.201704840
dc.relation.referencesEllis, R.W., Eslick, L., 1997. Variation and Range of Mercury Uptake into Plants at a Mercury-Contaminated Abandoned Mine Site. Bull. Environ. Contam. Toxicol, 59: 763-769.
dc.relation.referencesElizondo, C., Márquez-Linares, M. A., Marín-García, M. L., & Gutiérrez-Yurrita, P. J., 2016. Flora que crece naturalmente en presas de jale minero abandonadas susceptibles de ser utilizads en reclamación, Zimapán, Hidalgo, México., 41(July), 492-498.
dc.relation.referencesFalter, R., 1999. Experimental study on the unintentional abiotic methylation of inorganic mercury during analysis: Part 1: Localisation of the compounds effecting the abiotic mercury methylation. Chemosphere, 39, 1051-1053.
dc.relation.referencesFamoofo, O.O., & Abdul, W.O., 2020. Biometry, condition factors and length-weight relationships of sixteen fish species in Iwopin fresh-water ecotype of Lekki Lagoon, Ogun State, Southwest Nigeria. Heliyon, 6, e02957. https://doi.org/10.1016/j.heliyon.2019.e02957
dc.relation.referencesFarkas A, Salánki J, Specziár A (2003) Age-and size-specific patterns of heavy metals in the organs of freshwater fish Abramis brama L. populating a low-contaminated site. Water Res 37(5): 959-964. DOI: 10.1016/s0043-1354(02)00447-5
dc.relation.referencesFeng, XB., Jiang, H.M., Qiu, G.L., Yan, H.Y., Li, G.H., Li, Z.G., 2009. Geochemical processes of mercury in Wujiangdu and Dongfeng reservoirs, Guizhou, China. Environ Pollut; 157 (11): 2970-84.
dc.relation.referencesFernández-Martínez, R., Loredo, J., Ordóñez, A., & Rucandio, M. I. (2005). Distribution and mobility of mercury in soils from an old mining area in Mieres, Asturias (Spain). Science of the Total Environment, 346(1-3), 200-212. http://doi.org/10.1016/j.scitotenv.2004.12.010
dc.relation.referencesFernandez-Gomez, C., A. Drott, E. Bj orn, S. D ? ?ez, J. M. Bayona, S. Tesfalidet, A. Lindfors, and U. Skyllberg., 2013. Towards universal wavelength-specific photodegradation rate constants for methyl mercury in humic waters, exemplified by a boreal lake-wetland gradient. Environ. Sci. Technol. 47: 6279-6287. https://doi.org/10.1021/es400373s
dc.relation.referencesFernández-Martínez, R., Larios, R., Gómez-Pinilla, I., Gómez-Mancebo, B., López-Andrés, B., Loredo, J., Ordóñez, A., Rucandio, A., 2015. Mercury accumulation and speciation in plants and soils from abandoned cinnabar mines. Geoderma, 253-254, 30-38. http://dx.doi.org/10.1016/j.geoderma.2015.04.005
dc.relation.referencesFyfe, W. S., 1981. Introducción a la geoquímica. Editorial Reverté, S.A.
dc.relation.referencesFilgueiras, A. V., Lavilla, I., & Bendicho, C., 2002. Chemical sequential extraction for metal partitioning in environmental solid samples. Journal of Environmental Monitoring, 4, 823-857. https://doi.org/10.1039/b207574c
dc.relation.referencesForsberg, B.R., Forsberg. M.C.S, Padovani, C.R., Sargentini, E., Malm, O., 1994. High levels of mercury in fish and human hair from the Rio Negro basin (Brazilian Amazon): natural background or anthropogenic. In: Environmental mercury pollution and its health effects in Amazon River Basin. Natl Inst Minamata Disease and Inst Biophysics of the Univ Federal do Rio de Janeiro Rio de Janeiro, pp 33 - 39.
dc.relation.referencesFörstner, U., Wittmann, G.T.W., 1983. Metal pollution in the aquatic environment. Springer Verlag, Berlin. http//10.1007/978-3-642-69385-4
dc.relation.referencesFroese, R., 2006. Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations. J. Appl. Ichthyol., 22, 241-253. https://doi.org/10.1111/j.1439-0426.2006.00805.x
dc.relation.referencesFrohne, T., Rinklebe, J., 2013. Biogeochemical fractions of mercury in soil profiles of two different floodplain ecosystems in Germany. Water Air and Soil Pollution, 224.
dc.relation.referencesFuhrmann, B.C., Beutel, M.W., O'Day, P.A., Tran, C., Funk, A., Brower, S., Pasek, J., Seelos, M., 2021. Effects of mercury, organic carbon, and microbial inhibition on methylmercury cycling at the profundal sediment-water interface of a sulfate-rich hypereutrophic reservoir. Environmental Pollution, 268, 115853. https://doi.org/10.1016/j.envpol.2020.115853
dc.relation.referencesFuentes-Gandara, F., Pinedo-Hernández, J., Marrugo-Negrete, J.L., Díez, S., 2016. Human health impacts of exposure to metals through extreme consumption of fish from the Colombian Caribbean Sea. Environ Geochem Health. 40, 229-242. https://doi.org/10.1007/s10653-016-9896-z
dc.relation.referencesGagnon, C., Pelletier, E., Mucci, A., and W. F. 1996. Fitzgerald, Diagenetic behaviour of methylmercury in organic-rich coastal sediments. Limnol. Oceanogr. 41, 428.
dc.relation.referencesGalvão, R. C. F., Holanda, I. B. B., De Carvalho, D. P., Almeida, R., Souza, C. M. M., Lacerda, L. D., & Bastos, W. R., 2018. Freshwater shrimps (Macrobrachium depressimanum and Macrobrachium jelskii) as biomonitors of Hg availability in the Madeira River Basin, Western Amazon. Environmental Monitoring and Assessment, 190(2). http://doi.org/10.1007/s10661-018-6460-6
dc.relation.referencesGarcía, O., Veiga, M., Cordy, P., Suescún, O., Molina, J., Roeser, M., 2015. Artisanal gold minning in Antioquia, Colombia: a successful case of mercury reduction. J. Clean Prod. 90, 244-252. http://dx.doi.org/10.1016/j.jclepro.2014.11.032
dc.relation.referencesGarcia-Ordiales, E., Covelli, S., Manuel Rico, J., Roqueñí, N., Fontolan, G., Flor-Blanco, G., Cienfuegos, P., Loredo, J., 2018. Occurrence and speciation of arsenic and mercury in estuarine sediments affected by mining activities (Asturias, northern Spain). Chemosphere. 198, 281-289. https://doi.org/10.1016/j.chemosphere.2018.01.146
dc.relation.referencesGårdfeldt, K., Sommar, J., Stromberg, D., Feng, X., 2001. Oxidation of atomic mercury by hydroxyl radicals and photoinduced decomposition of methylmercury in the aqueous phase. Atmos. Environ. 35, 3039-3047. https://doi.org/10.1016/S1352-2310(01)00107-8
dc.relation.referencesGemici, Ü., 2008. Evaluation of the water quality related to the acid mine drainage of an abandoned mercury mine (Ala?ehir, Turkey). Environ Monit Assess, 147: 93-106. http://doi/10.1007/s10661-007-0101-9
dc.relation.referencesGerson, J.R., Driscoll, C.T., Hsu-Kim, H., Bernhardt, E.S., 2018. Senegalese artisanal gold mining leads to elevated total mercury and methylmercury concentrations in soils, sediments, and rivers. Elem Sci Anth, 6: 11. DOI: https://doi.org/10.1525/elementa.274
dc.relation.referencesGilmour, C.C., Henry, E.A., Mitchell, R., 1992. Sulfate stimulation of mercury methylation in freshwater sediments. Environ Sci Technol 26: 2281- 2287.
dc.relation.referencesGilmour, C. C., Podar, M., Bullock, A. L., Graham, A. M., Brown, S. D., Somenahally, A. C., et al., 2013. Mercury methylation by novel microorganisms from new environments. Environ. Sci. Technol. 47, 11810-11820. http://doi.org/10.1021/es403075t
dc.relation.referencesGilmour, C.A., Bell, J.T., Soren, A.B., Riedel, G., Riedel, G., Kopec, A.D., Bodaly, R.A., 2018. Distribution and biogeochemical controls on net methylmercury production in Penobscot River marshes and sediment. Science of the Total Environment. 640-641, 555-569.
dc.relation.referencesGionfriddo, C.M., Ogorek, J.M., Butcher, M., Krabbenhoft, D.P., Moreau, J.W., 2015. Mercury distribution and mobility at the abandoned Puhipuhi mercury mine, Northland, New Zealand. New Zealand Journal of Geology and Geophysics, 58: 1, 78-87. http://dx.doi.org/10.1080/00288306.2014.979840
dc.relation.referencesGolet, W.J. and T.A. Haines, 2001. Snapping turtles (Chelydra serpentina) as monitors for mercury contamination of aquatic environments. Environmental Monitoring and Assessment 71: 211-20.
dc.relation.referencesGómez, J., Almanza Meléndez, M.F., 2015. Mapa Geológico de Colombia: Servicio Geológico Colombiano. pp. 2694513.
dc.relation.referencesGonzalez-Raymat H, Liu G, Liriano C, Li Y, Yin Y, Shi J, et al., 2017. Elemental mercury: Its unique properties affect its behavior and fate in the environment. Environmental Pollution, 229: 69-86. http://dx.doi.org/10.1016/j.envpol.2017.04.101
dc.relation.referencesGray, J.E., Labson, V.F., Weaver, J.N., Krabbenhoft, D.P., 2002. Mercury and methylmercury contamination related to artisanal gold mining, Suriname. Geophysical Research Letters, Vol. 29, No. 23, 2105.
dc.relation.referencesGray, J.E., Hines, M.E., 2009. Biogeochemical mercury methylation influenced by reservoir eutrophication, Salmon Falls Creek Reservoir, Idaho, USA. Chem Geol. 258 (3-4): 157-67.
dc.relation.referencesGreen, C., Lewis, P.J., Wozniak, J.R., Drevnick, P.E., Thies, M.L., 2019. A comparison of factors affecting the small-scale distribution of mercury from artisanal small-scale gold mining in a Zimbabwean stream system. Science of the Total Environment, 647, 400-410
dc.relation.referencesGresens, R.L., 1967. Composition-volume relationships of metasomatism. Chem. Geol. 2, 47-55.
dc.relation.referencesGu, B., Bian, Y., Miller, C.L., Dong, W., Jiang, X., Liang, L., 2011. Mercury reduction and complexation by natural organic matter in anoxic environments. Proc. Natl. Acad. Sci. U.S.A. 108, 1479-1483. https://doi.org/10.1073/pnas.1008747108
dc.relation.referencesGuedron, S., Grangeon, S., Lanson, B., Grimaldi, M., 2009. Mercury speciation in a tropical soil association; consequence of gold mining on Hg distribution in French Guiana. Geoderma, 153, 331-346. https://doi.org/10.1016/j.geoderma.2009.08.017
dc.relation.referencesGuevara-Riba, A., Sahuquillo, A., López-Sánchez, J. F., & Rubio, R., 2006. Comparison of three strategies to evaluate uncertainty from in-house validation data. A case study: Mercury determination in sediments. Analytical and Bioanalytical Chemistry, 385(7), 1298-1303. http://doi.org/10.1007/s00216-006-0409-2
dc.relation.referencesGuimarães, J.R.D., Malm, O., Pfeiffer, W.C., 1995. A simplified radiochemical tech- nique for measurements of net mercury methylation rates in aquatic systems near goldmining areas, Amazon, Brazil. Sci. Total Environ. 175 (2), 151e162. https://doi.org/10.1016/0048-9697(95)04911-8
dc.relation.referencesGüiza, L., Aristizábal, J.D., 2013. Mercury and gold mining in Colombia: a failed state. Univ. Sci. 18, 33-49.
dc.relation.referencesGutiérrez-Mosquera, H., Sujitha, S. B., Jonathan, M. P., Sarkar, S. K., Medina-Mosquera, F., Ayala-Mosquera, H., Arreola-Mendoza, L., 2018. Mercury levels in human population from a mining district in Western Colombia. Journal of Environmental Sciences (China), 8, 1-8. http://doi.org/10.1016/j.jes.2017.12.007.
dc.relation.referencesHaitzer, M., Ryan, J., & Aiken, G. R., 2002. Binding of Hg(II) to DOM: the role of Hg (II) to DOM concentration ratio. Environ. Sci. Technol., 36, 3564-3570.
dc.relation.referencesHammerschmidt CR, Fitzgerald WF., 2004. Geochemical controls on the production and distribution of methylmercury in near-shore marine sediments. Environ Sci Technol, 38:1487-1495. https://doi.org/10.1021/es034528q
dc.relation.referencesHammerschmidt, C.R., Fitzgerald, W.F., 2006. Methylmercury in freshwater fish linked to atmospheric mercury deposition. Environ. Sci. Technol. 40, 7764- 7770.
dc.relation.referencesHan, Y., Kingston, H.M., Boylan, H.M., Rahman, G.M.M., Shah, S., Richter, R.C., et al., 2003. Speciation of mercury in soil and sediment by selective solvent and acid extraction. Anal. Bioanal.Chem. 375, 428-436. https://doi.org"
dc.rights.creativecommonsAttribution-NonCommercial-ShareAlike 4.0 International
dc.type.localTesis de Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa
dc.description.degreenameDoctor en Ingeniería
dc.description.degreelevelDoctorado
dc.publisher.grantorUniversidad de Medellín


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-ShareAlike 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-ShareAlike 4.0 International