Mostrar el registro sencillo del ítem
Distribución multicompartimental y fraccionamiento químico del mercurio en pozas de sedimentación de minas de aluvión abandonadas en un área aurífera del departamento del Chocó
dc.contributor.advisor | Morales Mira, Gladis Estela | |
dc.contributor.advisor | Marrugo Negrete, Jose Luis | |
dc.contributor.advisor | Montoya Jaramillo, Luis Javier | |
dc.contributor.author | Gutiérrez Mosquera, Harry | |
dc.coverage.spatial | Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees | eng |
dc.coverage.spatial | Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degreesLong: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees | |
dc.date.accessioned | 2021-06-01T15:42:49Z | |
dc.date.available | 2021-06-01T15:42:49Z | |
dc.date.created | 2021-03-24 | |
dc.identifier.other | T 0091 2021 | |
dc.identifier.uri | http://hdl.handle.net/11407/6392 | |
dc.description | El mercurio (Hg) es uno de los contaminantes ambientales más peligrosos que amenaza la salud de los ecosistemas acuáticos y las poblaciones humanas en muchas regiones del mundo. La minería de oro artesanal y a pequeña escala (ASGM) a menudo libera el Hg (aprox. 1400 Mg/año) principalmente en su forma elemental (Hg0), lo que conduce a la contaminación del suelo y los sistemas acuáticos adyacentes (ríos, lagos, embalses/reservorios). Por ello, pozas de extracción de oro abandonados en los antiguos sitios de minería del oro (AGMP) son particularmente susceptibles a presentar altas concentraciones de Hg en sus compartimentos ambientales. En estos sistemas, los sedimentos actúan como importantes sumideros/fuentes de Hg; pero, algunas variaciones en las condiciones químicas o físicas en ellos (por ejemplo, pH, Eh, OM, textura, Fe, S, Al) provocarán directamente cambios en la distribución, solubilidad, biodisponibilidad y toxicidad de los metales. Por ejemplo, el Hg puede biotransformarse en metilmercurio (MeHg), una poderosa neurotoxina que se bioacumula y biomagnifica en toda la red trófica. Además, se debe resaltar que en muchos países las AGMPs corresponden a lugares de pesca frecuentes para las comunidades locales. En consecuencia, es probable que las AGMPs sirvan de enlace con las poblaciones humanas que dependen directamente del consumo de pescado de las pozas como fuente primaria de proteínas, lo que también podría conducir a efectos negativos crónicos en la salud de los habitantes locales. | |
dc.description.abstract | Mercury (Hg) is one of the most dangerous pollutants that threatens the health of aquatic ecosystems and human populations in many regions around the world. Artisanal and small-scale gold mining (ASGMs) often releases Hg (approx. 1400 Mg/year) primarily in its elemental form (Hg0), which leads to contamination of the soil and adjacent aquatic systems (rivers, lakes, reservoirs/ponds). Therefore, the abandoned gold mining ponds (AGMPs) at the former gold mining sites are particularly susceptible to high concentrations of Hg in their environmental compartments. In these systems, sediments act as important sinks/sources of Hg. However, some variations in the chemical or physical conditions of the sediments (eg., pH, Eh, OM, texture, Fe, S, Al) will directly cause changes in the distribution, solubility, bioavailability and toxicity of the metals. For example, Hg can be biotransformed to methylmercury (MeHg), a powerful neurotoxin that bioaccumulates and biomagnifies throughout the trophic network. Additionally, in many countries, the AGMPs correspond to common fishing sites for local communities. Consequently, the AGMPs is likely to serve as a bond with the human populations who directly depend on the consumption of fish from the ponds as a primary source of protein, and this process also leads to chronic negative effects on the health of the local habitants. | |
dc.format.extent | p. 1-221 | |
dc.format.medium | Electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | spa | |
dc.publisher | Universidad de Medellín | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0 | |
dc.subject | Mercurio | |
dc.subject | Minas de oro abandonadas | |
dc.subject | Riesgo para la salud humana | |
dc.subject | Matrices agua-sedimentos-Macrofitas-peces | |
dc.title | Distribución multicompartimental y fraccionamiento químico del mercurio en pozas de sedimentación de minas de aluvión abandonadas en un área aurífera del departamento del Chocó | |
dc.rights.accessrights | info:eurepo/semantics/openAccess | |
dc.publisher.program | Doctorado en Ingeniería | |
dc.subject.lemb | Contaminación del agua | |
dc.subject.lemb | Contaminación del suelo | |
dc.subject.lemb | Cuencas sedimentarias | |
dc.subject.lemb | Mercurio | |
dc.subject.lemb | Minas - Impacto ambiental - Chocó (Colombia) | |
dc.subject.lemb | Minas de oro - Chocó (Colombia) | |
dc.subject.lemb | Tierras de aluvión | |
dc.subject.keyword | Mercury | |
dc.subject.keyword | Water-sediment-macrophyte-fish matrices | |
dc.subject.keyword | Abandoned gold mining | |
dc.subject.keyword | Human health risk | |
dc.relation.citationstartpage | 1 | |
dc.relation.citationendpage | 221 | |
dc.audience | Comunidad Universidad de Medellín | |
dc.publisher.faculty | Facultad de Ingenierías | |
dc.publisher.place | Medellín | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.relation.references | "Abrahim, G. M. S., & Parker, R. J., 2008. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136(1-3), 227-238. http://doi.org/10.1007/s10661-007-9678-2 | |
dc.relation.references | Ali, J., Kazi, T. G., Afridi, H. I., Baig, J. A., Arain, M. S., Naeemullah, & Farooq, S., 2016. The evaluation of sequentially extracted mercury fractions in Thar coal samples by using different extraction schemes. International Journal of Coal Geology, 156, 50-58. http://doi.org/10.1016/j.coal.2016.02.003 | |
dc.relation.references | Al-Majed, N. B., & Preston, M. R., 2000. Factors influencing the total mercury and methyl mercury in the hair of the fishermen of Kuwait. Environmental Pollution, 109(2), 239-250. http://doi.org/10.1016/S0269-7491(99)00261-4 | |
dc.relation.references | Almeida, R. De, Bernardi, J. V. E., Oliveira, R. C., Carvalho, D. P. de, Manzatto, A. G., Lacerda, L. D. De, & Bastos, W. R., 2014. Flood pulse and spatial dynamics of mercury in sediments in Puruzinho lake, Brazilian Amazon. Acta Amazonica, 44(1), 99-105. http://doi.org/10.1590/S0044-59672014000100010 | |
dc.relation.references | Almeida, I. L. S., Oliveira, M. D. R., Silva, J. B. B., & Coelho, N. M. M. (2016). Suitable extraction of soils and sediments for mercury species and determination combined with the cold vapor generation atomic absorption spectrometry technique. Microchemical Journal, 124, 326-330. http://doi.org/10.1016/j.microc.2015.09.007 | |
dc.relation.references | Alvarez, S., Kolok, A., Jimenez, L., Granados, C., 2012. Mercury concentrations in muscle and liver tissue of fish from marshes along the Magdalena river, Colombia. Bulletin of environmental contamination and toxicology, 89: 836-40. https://doi.org/10.1007/s00128-012-0782-9 | |
dc.relation.references | Amyot, M., Morel, F.M.M., Ariya, P.A., 2005. Dark oxidation of dissolved and liquid elemental mercury in aquatic environments. Environ. Sci. Technol. 39, 110-114. | |
dc.relation.references | Ansari, A.A., Khan, F.A., 2011. Nutrients phytoremediation of eutrophic waters using Eichhornia crassipes in a controlled environment. International Journal of Environmental Science, 2, 241-246. | |
dc.relation.references | Ansari, A.A., Naeem, M., Gill, S.S., AlZuaibr, F.M., 2020. Phytoremediation of contaminated waters: An eco-friendly technology based on aquatic macrophytes application. The Egyptian Journal of Aquatic Research, In press. https://doi.org/10.1016/j.ejar.2020.03.002 | |
dc.relation.references | Anual, Z. F., Maher, W., Krikowa, F., Hakim, L., Ahmad, N. I., & Foster, S., 2018. Mercury and risk assessment from consumption of crustaceans, cephalopods and fish from West Peninsular Malaysia. Microchemical Journal, 140(April), 214-221. http://doi.org/10.1016/j.microc.2018.04.024 | |
dc.relation.references | Appleton, J.D., Williams, T.M., Breward, N., Apostol, A., Miguel, J., Miranda, C. (1999). Mercury contamination associated with artisanal gold mining on the island of Mindanao, the Philippines. The Science of the Total Environment. 228: 95-109. | |
dc.relation.references | Armstrong, F.A.J., 1979, Effects of mercury compounds on fish, in: The Biogeochemistry of Mercury in the Environment, J.O. Nriagu, ed., New York, Elsevier/North Holland Biomedical Press, pp. 657-670. | |
dc.relation.references | Astera, M., 2010. Soil CEC explained: understanding, measuring and using cation exchange capacity for nutritious crops. Acres USA 40(3): 25-28. | |
dc.relation.references | ATSDR, 1997. Toxicological profile for mercury. Draft for public comment (update). Prepared by Research Triangle Institute under Contract No. 205-93-0606. Prepared for U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, August. | |
dc.relation.references | ATSDR, A. for T. S. and D. R. 2015. Priority List of Hazardous Substances. Retrieved August 15, 2016, from http://www.atsdr.cdc.gov/spl/ | |
dc.relation.references | Avigliano, E., Monferran, M.V., Sánchez, S., Wunderlin, D.A., Gastaminza, J., Volpedo, A.V., 2019. Distribution and bioaccumulation of 12 trace elements in water, sediment and tissues of the main fishery from different environments of the La Plata basin (South America): Risk assessment for human consumption. Chemosphere, 236: 124394. https://doi.org/10.1016/j.chemosphere.2019.124394 | |
dc.relation.references | Atibu, E. K., Devarajan, N., Laffite, A., Giuliani, G., Salumu, J. A., Muteb, R. C., Poté, J., 2016. Chemie der Erde Assessment of trace metal and rare earth elements contamination in rivers around abandoned and active mine 160iges . The case of Lubumbashi River and Tshamilemba Canal , Katanga , Democratic Republic of the Congo. Chemie Der Erde, 76, 353-362. | |
dc.relation.references | Austin, D., Scharf, R., Carroll, J., Enochs, M., 2016. Suppression of hypolimnetic methylmercury accumulation by liquid calcium nitrate amendment: Redox dynamics and fate of nitrate. Lake and Reservoir Management. 32(1), 61-73. https://doi.org/10.1080/10402381.2015.1121306 | |
dc.relation.references | Azevedo, L. S., Pestana, I. A., Rocha, A. R. M., Meneguelli-Souza, A. C., Lima, C. A. I., Almeida, M. G., Souza, C. M. M., 2018. Drought promotes increases in total mercury and methylmercury concentrations in fish from the lower Paraíba do Sul river, southeastern Brazil. Chemosphere, 202, 483-490. http://doi.org/10.1016/j.chemosphere.2018.03.059 | |
dc.relation.references | Bagur, M. G., Morales, S., & López-Chicano, M., 2009. Evaluation of the environmental contamination at an abandoned mining site using multivariate statistical techniques-The Rodalquilar (Southern Spain) mining district. Talanta, 80(1), 377-384. http://doi.org/10.1016/j.talanta.2009.06.075 | |
dc.relation.references | Bank, M.S., 2012. Mercury in the environment: pattern and process. 1st ed. University of California press. | |
dc.relation.references | Barkay, T., Miller, S.M., Summers, A.O., 2003. Bacterial mercury resistance from atoms to ecosystems. Fems Microbiol. Rev. 27, 355-384. | |
dc.relation.references | Bastos, W.R., Dórea, J.G., Bernardi, J.V.E., Lauthartte, L.C., Mussy, M.H., Lacerda, L.D., Malm, O., 2015. Mercury in fish of the Madeira river (temporal and spatial assessment), Brazilian Amazon. Environmental Research, 140: 191-197. http://dx.doi.org/10.1016/j.envres.2015.03.029 | |
dc.relation.references | Bastos, W., Dorea, J.G., Bernardi, J.V., Manzatto, A.G., Mussy, M.H., Lauthartte, L.C., Lacerda, L.D. Malm, O., 2016. Sex-related mercury bioaccumulation in fish from the Madeira River, Amazon. Environmental Research. 144: 73-80. | |
dc.relation.references | Batzevich, V. A., 1995. Hair trace element analysis in human ecology studies. Sci. Total Environ., 164, 89-98. | |
dc.relation.references | Beauvais-Flück, R., Slaveykova, V.I., Cosio, C., 2017. Cellular toxicity pathways of inorganic and methyl mercury in the green microalga chlamydomonas reinhardtii, Sci. Rep. 7: 1-12, https://doi.org/10.1038/s41598-017-08515-8 | |
dc.relation.references | Beauvais-Flück, R., Slaveykova, V.I., Skyllberg, U., Cosio, C., 2018. Molecular effects, speciation, and competition of inorganic and methyl mercury in the aquatic plant elodea nuttallii, Environ. Sci. Technol. 52: 8876-8884, https://doi.org/10. 1021/acs.est.8b02124. | |
dc.relation.references | Beckers, F., Rinklebe, J., 2017. Cycling of mercury in the environment: sources, fate, and human health implications: a review. Crit. Rev. Environ. Sci. Technol. 47 (9), 693-794. https://doi.org/10.1016/j.enmm.2020.100283 | |
dc.relation.references | Benoit, J.M., Mason, R.P. and Gilmour, C.C., 1999. Estimation of mercury-sulfide speciation and bioavailability in sediment pore waters using octanol-water partitioning, Environ. Toxicol. Chem., 18, 2138-2141. | |
dc.relation.references | Benoit, J.M., Gilmour, C.C., Heyes, A., Mason, R.P., Miller, C.L., 2002. Geochemical and biological controls over mercury production and degradation in aquatic systems. Biogeochemistry of Environmentally Important Trace Elements. ACS Symp. Ser. 835, 262-297. https://dx.doi.org/10.1021/bk-2003-0835.ch019 | |
dc.relation.references | Benoit, J., Gilmour, C.C., Heyes, A., Mason, R.P. and Miller, C., 2003. Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. In: Biogeochemistry of Environmentally Important Trace Elements, Chai, Y. and Braids, O.C. (eds.), ACS Symposium Series 835, American Chemical Society, Washington, DC., 262-297. | |
dc.relation.references | Benoit, G., 2018. Mercury in dated sediment cores from coastal ponds of St Thomas, USVI. Marine Pollution Bulletin, 126, 535-539. https://doi.org/10.1016/j.marpolbul.2017.09.056 | |
dc.relation.references | Bernaus, A., Gaona, X., van Ree, D., & Valiente, M., 2006. Determination of mercury in polluted soils surrounding a chlor-alkali plant. Direct speciation by X-ray absorption spectroscopy techniques and preliminary geochemical characterisation of the area. Analytica Chimica Acta, 565(1), 73-80. http://doi.org/10.1016/j.aca.2006.02.020 | |
dc.relation.references | Biester, H., Gosar, M., Müller, G., 1999. Mercury speciation in tailings of the Idrija mercury mine. Journal of Geochemical Exploration, 65: 195-204. | |
dc.relation.references | Biester, H., Gosar, M., Covelli, S., 2000. Occurrence and fractionation of mercury species derived from dumped mining residues in sediments of the Idrija mining area. Environ. Sci. Technol., 34, 3330-3336. https://doi.org/10.1021/es991334v | |
dc.relation.references | Biester, H., Muller, G., & Scholer, H. F., 2002. Binding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants. Science of the Total Environment, 284, 191-203. https://doi.org/10.1016/s0048-9697(01)00885-3 | |
dc.relation.references | Bigham, G.N., Murray, K.J., Masue-Slowey, Y., Henry, E.A., 2016. Biogeochemical controls on methylmercury in soils and sediments: Implications for site management. Integrated Environmental Assessment and Management, 13(2), 249-263. https://doi.org/10.1002/ieam.1822 | |
dc.relation.references | Bloom, N.S., 1989. Determination of Picogram Levels of Methylmercury by Aqueous Phase Ethylation, Followed by Cryogenic Gas-Chromatography with Cold Vapor Atomic Fluorescence Detection. Can J Fish Aquat Sci, 46(7): 1131-40. | |
dc.relation.references | Bloom, N.S., Gill, G. A., Cappellino, S., Dobbs, C., McShea, L., Driscoll, C., Mason, R., and Rudd, J., 1999. Speciation and cycling of mercury in Lavaca Bay, Texas, sediments, Environ. Sci. Technol., 33, 7. | |
dc.relation.references | Bloom, N.S., Preus, E., Katon, J., Hiltner, M., 2003. Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Anal. Chim. Acta, 479, 233-248. https://doi.org/10.1016/S0003-2670(02)01550-7 | |
dc.relation.references | Bohn, H.L., McNeal, B.L., O'Connor, G.A., 2001. Soil chemistry, 3rd edn. Wiley, Toronto. | |
dc.relation.references | Bollen, A. Ã., Wenke, A., & Biester, H., 2008. Mercury speciation analyses in HgCl 2 - contaminated soils and groundwater - Implications for risk assessment and remediation strategies, 42, 91-100. http://doi.org/10.1016/j.watres.2007.07.011 | |
dc.relation.references | Bose-O'Reilly, S., Drasch, G., Beinhoff, C., Rodrigues-Filho, S., Roider, G., Lettmeier, B., ? Siebert, U. (2010). Health assessment of artisanal gold miners in Indonesia. Science of the Total Environment, 408(4), 713-725. http://doi.org/10.1016/j.scitotenv.2009.10.070 | |
dc.relation.references | Boszke, L., Kowalski, A., Glosinska, G., Szarek, R., & Siepak, J., 2003. Environmental factors affecting speciation of mercury in the bottom sediments; an overview. Polish Journal of Environmental Studies, 12(1), 5-13. | |
dc.relation.references | Boszke, L., G?osi?ska, G., & Siepak, J., 2002. Some Aspects of Speciation of Mercury in a Water Environment. Polish Journal of Environmental Studies, 11(4), 285-298. | |
dc.relation.references | Boszke, L., Kowalski, A., & Siepak, J. 2004. Grain size partitioning of mercury in sediments of the Middle Odra River (Germany/Poland). Water, Air, and Soil Pollution, 159, 125-138. https://doi.org/10.1023/B:WATE.0000049171.22781.bd | |
dc.relation.references | Boszke, L., Kowalski, A., Szczuci?ski, W., Rachlewicz, G., Lorenc, S., & Siepak, J., 2006. Assessment of mercury mobility and bioavailability by fractionation method in sediments from coastal zone inundated by the 26 December 2004 tsunami in Thailand. Environmental Geology, 51(4), 527-536. http://doi.org/10.1007/s00254-006-0349-3 | |
dc.relation.references | Bouyoucos, G.J., 1962. Hydrometer method improved for making particle size analysis of soils. Agron. J., vol. 54: 464-465, 1962. | |
dc.relation.references | Bravo, A.G., Bouchet, S., Tolu, J., Björn, E., Mateos-Rivera, A., Bertilsson, S., 2017. Molecular composition of organic matter controls methylmercury formation in boreal lakes. Nat. Commun. 8, 142-155. https://doi.org/10.1038/ncomms14255 | |
dc.relation.references | Bowles, K. C., Apte, S. C., Maher, W. A., Kawei, M., & Smith, R., 2001. Bioaccumulation and biomagnification of mercury in Lake Murray, Papua New Guinea. Canadian Journal of Fisheries and Aquatic Sciences, 58(5), 888-897. http://doi.org/10.1139/f01-042 | |
dc.relation.references | Campbell P., Lewis A., Chapman P., Luoma S., Stokes P., 1988. Biologically available metals in sediments. National Research Council of Canada (NRCC). Otawa, 298p. | |
dc.relation.references | Chatterjee, M., Canário, J., Sarkar, S.K., Branco, V., Godhantaraman, N., Bhattacharya, B.D., Bhattacharya, A., 2012. Biogeochemistry of mercury and methylmercury in sediment cores from Sundarban mangrove wetland, India-a UNESCO World Heritage Site. Environ Monit Assess. 184:5239-5254. http://doi.org/10.1007/s10661-011-2336-8 | |
dc.relation.references | Chakraborty, P., Ramteke, D., & Chakraborty, S., 2015. Geochemical partitioning of Cu and Ni in mangrove sediments: Relationships with their bioavailability. Marine Pollution Bulletin, 93(1-2), 194-201. http://doi.org/10.1016/j.marpolbul.2015.01.016 | |
dc.relation.references | Callister S.M, Winfrey M.R, 1986. Microbial methylation of mercury in upper Wisconsin river sediments. Water Air Soil Pollut, 29: 453- 465. | |
dc.relation.references | Carranza-Lopez, L., Caballero-Gallardo, K., Cervantes-Ceballos, L., Turizo-Tapia, A., Olivero-Verbel, J., 2019. Multicompartment Mercury Contamination in Major Gold Mining Districts at the Department of Bolivar, Colombia. Archives of Environmental Contamination and Toxicology, 76:640-649. https://doi.org/10.1007/s00244-019-00609-w | |
dc.relation.references | Caricchia, A.M., Minervini, G., Soldati, P., Chiavarini, S., Ubaldi, C., Morabito, R., 1997. GC-ECD determination of methylmercury in sediment samples using a SPB-608 capillary column after alkaline digestion. Microchem. J. 55, 44-55. https://doi.org/10.1006/mchj.1996.1357 | |
dc.relation.references | Carmouze, J.P., Lucotte, M., Boudou, A., 2001. Le Mercure en Amazonie Rôle de l'homme et de l'environnement, Risques sanitaires. IRD Editions, Bondy. 494 pp. (in French). | |
dc.relation.references | Carvalho, C.M.L., Chew, E.H., Hashemy, S.I., Lu, J., Holmgren, A., 2008. Inhibition of the humanthioredoxin system: a molecular mechanism of mercury toxicity, J. Biol. Chem. 283: 11913-11923, https://doi.org/10.1074/jbc.M710133200 | |
dc.relation.references | Castillo, A.M., 2013. Los retreros y la gente del río Condoto: minería y transformaciones socioambientales en Chocó, 1975- 2013. Tesis Maestría. Universidad de los Andes, Bogotá DC. | |
dc.relation.references | Cao, D., Chen, W., Xiang, Y., et al., 2021. The efficiencies of inorganic mercury bio-methylation by aerobic bacteria under different oxygen concentrations. Ecotoxicology and Environmental Safety, 207, 111538. https://doi.org/10.1016/j.ecoenv.2020.111538 | |
dc.relation.references | Cesar, R., Egler, S., Polivanov, H., Castilhos, Z., & Rodrigues, A. P., 2011. Mercury, copper and zinc contamination in soils and fluvial sediments from an abandoned gold mining area in southern Minas Gerais State, Brazil. Environmental Earth Sciences, 64(1), 211- 222. http://doi.org/10.1007/s12665-010-0840-8 | |
dc.relation.references | CETEM, 1989. Relat6rio Anual do Projeto Pocone. Centr Tecnol Mineral, Rio de Janeiro, p. 287 | |
dc.relation.references | Chakraborty, P., Ramteke, D., & Chakraborty, S. (2015). Geochemical partitioning of Cu and Ni in mangrove sediments: Relationships with their bioavailability. Marine Pollution Bulletin, 93(1-2), 194-201. http://doi.org/10.1016/j.marpolbul.2015.01.016 | |
dc.relation.references | Chen, S.C., Sheu, Y.T., Surampalli, R.Y., Zhang, T.C., Kao, C.M., 2018. Application of microbial transformation to remediate Hg-contaminated water: strain isolation and laboratory microcosm study. J. Environ. Eng. 144 (7), 04018045. http://doi.org/10.1061/(ASCE)EE.1943-7870.0001385 | |
dc.relation.references | Chen, X., Ji, H., Yang, W., Zhu, B., & Ding, H., 2016. Speciation and distribution of mercury in soils around gold mines located upstream of Miyun Reservoir, Beijing, China. Journal of Geochemical Exploration, 163, 1-9. http://doi.org/10.1016/j.gexplo.2016.01.015 | |
dc.relation.references | Chiasson-Gould SA, Blais JM, Poulain AJ. 2014. Dissolved organic matter kinetically controls mercury bioavailability to bacteria. Environ Sci Technol, 48: 3153- 3161. | |
dc.relation.references | Chien LC, Hung TC, Choang KY, Yeh CY, Meng PJ, Shieh MJ, Han BC, 2002. Daily intake of TBT, Cu, Zn, Cd and As for fishermen in Taiwan. Sci Total Environ, 285(1):177-185 | |
dc.relation.references | Ching, I. L., & Hongxiao, T., 1985. Chemical studies of aquatic pollution by heavy metals in China. In K. J. Irgolic & A. E. Martel (Eds.), Environmental inorganic chemistry (pp. 359-371). Deerfield Beach: VCH. | |
dc.relation.references | Clarkson, T.W., 2002. The three modern faces of mercury, Environ. Health Perspect. 110: 11-23, https://doi.org/10.1289/ehp.02110s111 | |
dc.relation.references | Clarkson, T.W., Magos, L., 2006. The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 36, 609-662. https://doi.org/10.1080/10408440600845619 | |
dc.relation.references | Cogua, R. del P. (2011). Estudio comparativo de mercurio a través de redes detritívoras y plantívoras en un estuario tropical. Tesis Doctoral, Universidad Nacional de Colombia. | |
dc.relation.references | Colmenares, G., 1979. Historia económica y social de Colombia. Popayán: una sociedad esclavista, 1600 - 1800. Bogotá, Colombia: Editorial La Carreta. | |
dc.relation.references | Cosio, C., Fluck, R., Regier, N., Slaveykova, V.I., 2014. Effects of macrophytes on the fate of mercury in aquatic systems. Environ. Toxicol. Chem. 33, 1225-1238. | |
dc.relation.references | Coquery, M., Welbourn, P.M., 1995. The relationship between metal concentration and organic matter in sediments and metal concentration in the aquatic macrophyte Eriocaulon septangulare. Water Res. 29 (9), 2094-2102. https://doi.org/10.1016/0043-1354(95)00015-D | |
dc.relation.references | Coquery, M., Cossa, D., Peretyazhko, T., Azemard, S., Charlet, L., 2003. Methylmer- cury formation in the anoxic waters of the Petit-Saut reservoir (French Guiana) and its spreading in the adjacent Sinnamary river. J. Phys. IV France 107 (1), 327-331. https://dx.doi.org/10.1051/jp4:20030308 | |
dc.relation.references | Cordy, P., Veiga, M. M., Salih, I., Al-Saadi, S., Console, S., Garcia, O., Roeser, M., 2011. Mercury contamination from artisanal gold mining in Antioquia, Colombia: The world's highest per capita mercury pollution. Science of the Total Environment, 410-411, 154-160. http://doi.org/10.1016/j.scitotenv.2011.09.006 | |
dc.relation.references | Cordy, P., Veiga, M., Crawford, B., Garcia, O., Gonzalez, V., Moraga, D., Wip, D., 2013. Characterization, mapping, and mitigation of mercury vapour emissions from artisanal mining gold shops. Environmental Research, 125, 82-91. http://doi.org/10.1016/j.envres.2012.10.015 | |
dc.relation.references | Chadwick SP, Babiarz CL, Hurley JP, Armstrong DE. 2013. Importance of hypolimnetic cycling in aging of ""new"" mercury in a northern temperate lake. Sci Total Environ, 448: 176- 188. | |
dc.relation.references | Crichton, R., 2019. Metals in the Environment. Chapter 23. A New Introduction to Molecular Structure and Function. Biological Inorganic Chemistry (Third Edition), 625-644. https://doi.org/10.1016/B978-0-12-811741-5.00023-0 | |
dc.relation.references | Daher, V. 1999. No rastro do mercúrio. Ciênc. Hoje 26: 46-48. | |
dc.relation.references | Davidson, C.M., Urquhart, G.J., Ajmone-Marsan, F., Biasioli, M., Duarte, A., Diaz- Barrientos, E., 2006. Fractionation of potentially toxic elements in urban soils from five European cities by means of a harmonized sequential extraction procedure. Anal. Chim. Acta, 565, 63-72. https://doi.org/10.1016/j.aca.2006.02.014 | |
dc.relation.references | Davis, A. M., Bloom, N.S., Hee, S.S., 1997. The environmental geochemistry and bioaccessibility of mercury in soils and sediments: a review. Risk analysis, 17:5. http://doi.org/10.1111/j.1539-6924.1997.tb00897.x | |
dc.relation.references | Delaune, R.D., Jugsujinda, A., Devai, I., Patrickjr, W.H., 2004. Relationship of sediment redox conditions to methyl mercury in surface sediment of Louisiana Lakes. J. Environ. Sci. Health A 39, 1925-1933. https://doi.org/10.1081/ESE-120039365 | |
dc.relation.references | DeLaune, R., Jugsujinda, A., Devai, I., Patrick Jr, W., 2004. Relationship of sediment redox conditions to methyl mercury in surface sediment of Louisiana lakes. Environ. Sci. Health 39 (8), 1925-1933. https://doi.org/10.1081/ese-120039365 | |
dc.relation.references | de Paula Gutiérrez, B.F., Agudelo, C.A.R. Fish as bioindicators: coal and mercury pollution in Colombia's ecosystems. Environ Sci Pollut Res 27, 27541-27562 (2020). https://doi.org/10.1007/s11356-020-09159-4 | |
dc.relation.references | Derek R, Lovley D.R., Phillips E.J.P., 1986. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol, 51(4): 683- 689. | |
dc.relation.references | Díaz, W. A., & Elcoro, S., 2009. Plantas Colonizadoras En Áreas Perturbadas Por La Minería En El Estado Bolívar, Venezuela. Acta Botánica Venezuelica, 32(2), 453-466. | |
dc.relation.references | Díez, S., Bayona J., 2002. Determination of methylmercury in human hair by ethylation followed by headspace solid-phase microextraction-gas chromatography-cold-vapour atomic fluorescence spectrometry. Journal of Chromatography A, 963; 345-351. | |
dc.relation.references | Díez, S., 2009. Human health effects of methylmercury exposure. Rev. Environ. Contam. Toxicol. 198, 111-132. https://doi.org/10.1007/978-0-387-09647-6 | |
dc.relation.references | Díez, S., Giaggio, R, 2018. Do biofilms affect the measurement of mercury by the DGT technique? Microcosm and field tests to prevent biofilm growth. Chemosphere, 210, 692-698. https://doi.org/10.1016/j.chemosphere.2018.07.047 | |
dc.relation.references | Dong, A., Zhai, S., Louchouarn, P., Izon, G., Zhang, H., Jiang, X., 2018. The distribution and accumulation of mercury and methylmercury in surface sediments beneath the East China Sea. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-018-3880-3 | |
dc.relation.references | Donkor, A.K., Bonzongo, j.C., Nartey, V.K., Adotey, D.K., 2006. Mercury in different environmental compartments of the Para River Basin, Ghana. Science of the Total Environment. 368: 164-176. | |
dc.relation.references | Driscoll, C., Mason, R., Chan, H., 2013. Mercury as a global pollutant: sources, pathways, and effects. Environ. Sci. Technol. 47, 4967-4983. | |
dc.relation.references | Drott, A., Lambertsson, L., Björn, E, Skyllberg, U., 2007. Importance of dissolved neutral mercury sulfides for methyl mercury production in contaminated sediments. Environ Sci Technol, 41: 2270-2276. | |
dc.relation.references | Dural, M., Goksu, A., Ozak, A., 2007. Investigation of heavy metal levels in economically important fish species captured from the Tuzla lagoon. Food Chem. 102, 415-421. | |
dc.relation.references | Ehrlich, H.L., Newman, D.K., 2008. Geomicrobiology, fifth ed. CRC Press, Boca Raton, FL. | |
dc.relation.references | Erasmus, V.N., Iitembu, J.A., Hamutenya, S., Gamatham, J., 2019. Evidences of possible influences of methylmercury concentrations on condition factor and maturation of Lophius vomerinus (Cape monkfish). Marine Pollution Bulletin, 146, 33-38. | |
dc.relation.references | https://doi.org/10.1016/j.marpolbul.2019.05.060 | |
dc.relation.references | Esdaile, L. J., & Chalker, J. M., 2018. The Mercury Problem in Artisanal and Small-Scale Gold Mining. Chemistry - A European Journal, 24(27), 6905-6916. http://doi.org/10.1002/chem.201704840 | |
dc.relation.references | Ellis, R.W., Eslick, L., 1997. Variation and Range of Mercury Uptake into Plants at a Mercury-Contaminated Abandoned Mine Site. Bull. Environ. Contam. Toxicol, 59: 763-769. | |
dc.relation.references | Elizondo, C., Márquez-Linares, M. A., Marín-García, M. L., & Gutiérrez-Yurrita, P. J., 2016. Flora que crece naturalmente en presas de jale minero abandonadas susceptibles de ser utilizads en reclamación, Zimapán, Hidalgo, México., 41(July), 492-498. | |
dc.relation.references | Falter, R., 1999. Experimental study on the unintentional abiotic methylation of inorganic mercury during analysis: Part 1: Localisation of the compounds effecting the abiotic mercury methylation. Chemosphere, 39, 1051-1053. | |
dc.relation.references | Famoofo, O.O., & Abdul, W.O., 2020. Biometry, condition factors and length-weight relationships of sixteen fish species in Iwopin fresh-water ecotype of Lekki Lagoon, Ogun State, Southwest Nigeria. Heliyon, 6, e02957. https://doi.org/10.1016/j.heliyon.2019.e02957 | |
dc.relation.references | Farkas A, Salánki J, Specziár A (2003) Age-and size-specific patterns of heavy metals in the organs of freshwater fish Abramis brama L. populating a low-contaminated site. Water Res 37(5): 959-964. DOI: 10.1016/s0043-1354(02)00447-5 | |
dc.relation.references | Feng, XB., Jiang, H.M., Qiu, G.L., Yan, H.Y., Li, G.H., Li, Z.G., 2009. Geochemical processes of mercury in Wujiangdu and Dongfeng reservoirs, Guizhou, China. Environ Pollut; 157 (11): 2970-84. | |
dc.relation.references | Fernández-Martínez, R., Loredo, J., Ordóñez, A., & Rucandio, M. I. (2005). Distribution and mobility of mercury in soils from an old mining area in Mieres, Asturias (Spain). Science of the Total Environment, 346(1-3), 200-212. http://doi.org/10.1016/j.scitotenv.2004.12.010 | |
dc.relation.references | Fernandez-Gomez, C., A. Drott, E. Bj orn, S. D ? ?ez, J. M. Bayona, S. Tesfalidet, A. Lindfors, and U. Skyllberg., 2013. Towards universal wavelength-specific photodegradation rate constants for methyl mercury in humic waters, exemplified by a boreal lake-wetland gradient. Environ. Sci. Technol. 47: 6279-6287. https://doi.org/10.1021/es400373s | |
dc.relation.references | Fernández-Martínez, R., Larios, R., Gómez-Pinilla, I., Gómez-Mancebo, B., López-Andrés, B., Loredo, J., Ordóñez, A., Rucandio, A., 2015. Mercury accumulation and speciation in plants and soils from abandoned cinnabar mines. Geoderma, 253-254, 30-38. http://dx.doi.org/10.1016/j.geoderma.2015.04.005 | |
dc.relation.references | Fyfe, W. S., 1981. Introducción a la geoquímica. Editorial Reverté, S.A. | |
dc.relation.references | Filgueiras, A. V., Lavilla, I., & Bendicho, C., 2002. Chemical sequential extraction for metal partitioning in environmental solid samples. Journal of Environmental Monitoring, 4, 823-857. https://doi.org/10.1039/b207574c | |
dc.relation.references | Forsberg, B.R., Forsberg. M.C.S, Padovani, C.R., Sargentini, E., Malm, O., 1994. High levels of mercury in fish and human hair from the Rio Negro basin (Brazilian Amazon): natural background or anthropogenic. In: Environmental mercury pollution and its health effects in Amazon River Basin. Natl Inst Minamata Disease and Inst Biophysics of the Univ Federal do Rio de Janeiro Rio de Janeiro, pp 33 - 39. | |
dc.relation.references | Förstner, U., Wittmann, G.T.W., 1983. Metal pollution in the aquatic environment. Springer Verlag, Berlin. http//10.1007/978-3-642-69385-4 | |
dc.relation.references | Froese, R., 2006. Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations. J. Appl. Ichthyol., 22, 241-253. https://doi.org/10.1111/j.1439-0426.2006.00805.x | |
dc.relation.references | Frohne, T., Rinklebe, J., 2013. Biogeochemical fractions of mercury in soil profiles of two different floodplain ecosystems in Germany. Water Air and Soil Pollution, 224. | |
dc.relation.references | Fuhrmann, B.C., Beutel, M.W., O'Day, P.A., Tran, C., Funk, A., Brower, S., Pasek, J., Seelos, M., 2021. Effects of mercury, organic carbon, and microbial inhibition on methylmercury cycling at the profundal sediment-water interface of a sulfate-rich hypereutrophic reservoir. Environmental Pollution, 268, 115853. https://doi.org/10.1016/j.envpol.2020.115853 | |
dc.relation.references | Fuentes-Gandara, F., Pinedo-Hernández, J., Marrugo-Negrete, J.L., Díez, S., 2016. Human health impacts of exposure to metals through extreme consumption of fish from the Colombian Caribbean Sea. Environ Geochem Health. 40, 229-242. https://doi.org/10.1007/s10653-016-9896-z | |
dc.relation.references | Gagnon, C., Pelletier, E., Mucci, A., and W. F. 1996. Fitzgerald, Diagenetic behaviour of methylmercury in organic-rich coastal sediments. Limnol. Oceanogr. 41, 428. | |
dc.relation.references | Galvão, R. C. F., Holanda, I. B. B., De Carvalho, D. P., Almeida, R., Souza, C. M. M., Lacerda, L. D., & Bastos, W. R., 2018. Freshwater shrimps (Macrobrachium depressimanum and Macrobrachium jelskii) as biomonitors of Hg availability in the Madeira River Basin, Western Amazon. Environmental Monitoring and Assessment, 190(2). http://doi.org/10.1007/s10661-018-6460-6 | |
dc.relation.references | García, O., Veiga, M., Cordy, P., Suescún, O., Molina, J., Roeser, M., 2015. Artisanal gold minning in Antioquia, Colombia: a successful case of mercury reduction. J. Clean Prod. 90, 244-252. http://dx.doi.org/10.1016/j.jclepro.2014.11.032 | |
dc.relation.references | Garcia-Ordiales, E., Covelli, S., Manuel Rico, J., Roqueñí, N., Fontolan, G., Flor-Blanco, G., Cienfuegos, P., Loredo, J., 2018. Occurrence and speciation of arsenic and mercury in estuarine sediments affected by mining activities (Asturias, northern Spain). Chemosphere. 198, 281-289. https://doi.org/10.1016/j.chemosphere.2018.01.146 | |
dc.relation.references | Gårdfeldt, K., Sommar, J., Stromberg, D., Feng, X., 2001. Oxidation of atomic mercury by hydroxyl radicals and photoinduced decomposition of methylmercury in the aqueous phase. Atmos. Environ. 35, 3039-3047. https://doi.org/10.1016/S1352-2310(01)00107-8 | |
dc.relation.references | Gemici, Ü., 2008. Evaluation of the water quality related to the acid mine drainage of an abandoned mercury mine (Ala?ehir, Turkey). Environ Monit Assess, 147: 93-106. http://doi/10.1007/s10661-007-0101-9 | |
dc.relation.references | Gerson, J.R., Driscoll, C.T., Hsu-Kim, H., Bernhardt, E.S., 2018. Senegalese artisanal gold mining leads to elevated total mercury and methylmercury concentrations in soils, sediments, and rivers. Elem Sci Anth, 6: 11. DOI: https://doi.org/10.1525/elementa.274 | |
dc.relation.references | Gilmour, C.C., Henry, E.A., Mitchell, R., 1992. Sulfate stimulation of mercury methylation in freshwater sediments. Environ Sci Technol 26: 2281- 2287. | |
dc.relation.references | Gilmour, C. C., Podar, M., Bullock, A. L., Graham, A. M., Brown, S. D., Somenahally, A. C., et al., 2013. Mercury methylation by novel microorganisms from new environments. Environ. Sci. Technol. 47, 11810-11820. http://doi.org/10.1021/es403075t | |
dc.relation.references | Gilmour, C.A., Bell, J.T., Soren, A.B., Riedel, G., Riedel, G., Kopec, A.D., Bodaly, R.A., 2018. Distribution and biogeochemical controls on net methylmercury production in Penobscot River marshes and sediment. Science of the Total Environment. 640-641, 555-569. | |
dc.relation.references | Gionfriddo, C.M., Ogorek, J.M., Butcher, M., Krabbenhoft, D.P., Moreau, J.W., 2015. Mercury distribution and mobility at the abandoned Puhipuhi mercury mine, Northland, New Zealand. New Zealand Journal of Geology and Geophysics, 58: 1, 78-87. http://dx.doi.org/10.1080/00288306.2014.979840 | |
dc.relation.references | Golet, W.J. and T.A. Haines, 2001. Snapping turtles (Chelydra serpentina) as monitors for mercury contamination of aquatic environments. Environmental Monitoring and Assessment 71: 211-20. | |
dc.relation.references | Gómez, J., Almanza Meléndez, M.F., 2015. Mapa Geológico de Colombia: Servicio Geológico Colombiano. pp. 2694513. | |
dc.relation.references | Gonzalez-Raymat H, Liu G, Liriano C, Li Y, Yin Y, Shi J, et al., 2017. Elemental mercury: Its unique properties affect its behavior and fate in the environment. Environmental Pollution, 229: 69-86. http://dx.doi.org/10.1016/j.envpol.2017.04.101 | |
dc.relation.references | Gray, J.E., Labson, V.F., Weaver, J.N., Krabbenhoft, D.P., 2002. Mercury and methylmercury contamination related to artisanal gold mining, Suriname. Geophysical Research Letters, Vol. 29, No. 23, 2105. | |
dc.relation.references | Gray, J.E., Hines, M.E., 2009. Biogeochemical mercury methylation influenced by reservoir eutrophication, Salmon Falls Creek Reservoir, Idaho, USA. Chem Geol. 258 (3-4): 157-67. | |
dc.relation.references | Green, C., Lewis, P.J., Wozniak, J.R., Drevnick, P.E., Thies, M.L., 2019. A comparison of factors affecting the small-scale distribution of mercury from artisanal small-scale gold mining in a Zimbabwean stream system. Science of the Total Environment, 647, 400-410 | |
dc.relation.references | Gresens, R.L., 1967. Composition-volume relationships of metasomatism. Chem. Geol. 2, 47-55. | |
dc.relation.references | Gu, B., Bian, Y., Miller, C.L., Dong, W., Jiang, X., Liang, L., 2011. Mercury reduction and complexation by natural organic matter in anoxic environments. Proc. Natl. Acad. Sci. U.S.A. 108, 1479-1483. https://doi.org/10.1073/pnas.1008747108 | |
dc.relation.references | Guedron, S., Grangeon, S., Lanson, B., Grimaldi, M., 2009. Mercury speciation in a tropical soil association; consequence of gold mining on Hg distribution in French Guiana. Geoderma, 153, 331-346. https://doi.org/10.1016/j.geoderma.2009.08.017 | |
dc.relation.references | Guevara-Riba, A., Sahuquillo, A., López-Sánchez, J. F., & Rubio, R., 2006. Comparison of three strategies to evaluate uncertainty from in-house validation data. A case study: Mercury determination in sediments. Analytical and Bioanalytical Chemistry, 385(7), 1298-1303. http://doi.org/10.1007/s00216-006-0409-2 | |
dc.relation.references | Guimarães, J.R.D., Malm, O., Pfeiffer, W.C., 1995. A simplified radiochemical tech- nique for measurements of net mercury methylation rates in aquatic systems near goldmining areas, Amazon, Brazil. Sci. Total Environ. 175 (2), 151e162. https://doi.org/10.1016/0048-9697(95)04911-8 | |
dc.relation.references | Güiza, L., Aristizábal, J.D., 2013. Mercury and gold mining in Colombia: a failed state. Univ. Sci. 18, 33-49. | |
dc.relation.references | Gutiérrez-Mosquera, H., Sujitha, S. B., Jonathan, M. P., Sarkar, S. K., Medina-Mosquera, F., Ayala-Mosquera, H., Arreola-Mendoza, L., 2018. Mercury levels in human population from a mining district in Western Colombia. Journal of Environmental Sciences (China), 8, 1-8. http://doi.org/10.1016/j.jes.2017.12.007. | |
dc.relation.references | Haitzer, M., Ryan, J., & Aiken, G. R., 2002. Binding of Hg(II) to DOM: the role of Hg (II) to DOM concentration ratio. Environ. Sci. Technol., 36, 3564-3570. | |
dc.relation.references | Hammerschmidt CR, Fitzgerald WF., 2004. Geochemical controls on the production and distribution of methylmercury in near-shore marine sediments. Environ Sci Technol, 38:1487-1495. https://doi.org/10.1021/es034528q | |
dc.relation.references | Hammerschmidt, C.R., Fitzgerald, W.F., 2006. Methylmercury in freshwater fish linked to atmospheric mercury deposition. Environ. Sci. Technol. 40, 7764- 7770. | |
dc.relation.references | Han, Y., Kingston, H.M., Boylan, H.M., Rahman, G.M.M., Shah, S., Richter, R.C., et al., 2003. Speciation of mercury in soil and sediment by selective solvent and acid extraction. Anal. Bioanal.Chem. 375, 428-436. https://doi.org" | |
dc.rights.creativecommons | Attribution-NonCommercial-ShareAlike 4.0 International | |
dc.type.local | Tesis de Doctorado | |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | spa |
dc.identifier.instname | instname:Universidad de Medellín | spa |
dc.description.degreename | Doctor en Ingeniería | |
dc.description.degreelevel | Doctorado | |
dc.publisher.grantor | Universidad de Medellín |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Tesis [710]