Mostrar el registro sencillo del ítem

Current-Voltage Characteristics of a Self-Assembled DNA;
Curva característica de voltaje y corriente de un ADN autoensamblado

dc.contributor.authorPaez Gonzalez, Carlos Jose
dc.contributor.authorQuintero Orozco, Jorge Hernan
dc.contributor.authorGarcía Castro, Andrés Camilo
dc.date.accessioned2021-10-05T18:41:56Z
dc.date.available2021-10-05T18:41:56Z
dc.date.created2020-03-18
dc.identifier.issn1692-3324
dc.identifier.urihttp://hdl.handle.net/11407/6544
dc.descriptionEste artículo muestra un trabajo en el que se investigan numéricamente las propiedades de transporte de los patrones de una red cuadrada bidimensional construida a partir de una secuencia de ADN telomérico, a través de un modelo tight-binding efectivo para la estructura electrónica, mientras que la corriente se obtiene dentro del marco de funciones de Green. Se muestra que las estructuras de ADN autoensambladas basadas en cadenas de ADN teloméricas tienen características de voltaje de corriente con una robusta secuencia de escalones que favorecen el control del ADN con los contactos, así como los efectos de interferencia. Se observan variaciones interesantes del mecanismo de percolación, que dependen de la competencia entre la longitud de localización y la distancia entre los cruces en las estructuras de red cuadrada bidimensional autoensambladas, las cuales hacen que el sistema sea elegible para aplicaciones nanoelectrónicas.
dc.descriptionIn this work, we numerically investigate the transport properties of two-dimensional square lattice patterns built from a telomeric DNA sequence, using an effective tight-binding model for the electronic structure, while the current is obtained within a Green's function framework. We show that the self-assembled DNA structures based on telomeric DNA strands have current-voltage (I-V) characteristics, which make the system eligible for nanoelectronic applications.This paper shows a research on the transport properties of two-dimensional square lattice patterns built from a telomeric DNA sequence. A tight-binding model, and the recursive Green's function method were used. It is showed that the self-assembled DNA structures based on telomeric DNA strands have current-voltage (I-V) characteristics, with robust plateau structures that favor the scrutiny of DNA-lead, as well as interference effects. An increase of the current, dependent on the distance between the crosses in the self-assembled square lattice structures, is observed, which makes the system eligible for nanoelectronic applications.
dc.descriptionEste artigo mostra um trabalho no qual se pesquisam numericamente as propriedades de transporte dos padrões de uma rede quadrada bidimensional construída a partir de uma sequência de DNA telomérico, por meio de um modelo tight-binding efetivo para a estrutura eletrônica, enquanto a corrente é obtida dentro do âmbito de funções de Green. Mostra-se que as estruturas de DNA autoassembladas baseadas em correntes de DNA teloméricas têm características de voltagem de corrente com uma robusta sequência de etapas que favorecem o controle do DNA com os contatos, bem como os efeitos de interferência. Observam-se variações interessantes do mecanismo de percolação, que dependem da competição entre a longitude de localização e a distância entre os cruzamentos nas estruturas de rede quadrada bidimensional autoensambledas, as quais fazem que o sistema seja elegível para aplicações nano eletrônicas.
dc.formatPDF
dc.format.extentp. 217-225
dc.format.mediumElectrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad de Medellín
dc.relation.ispartofseriesRevista Ingenierías Universidad de Medellín; Vol. 19 Núm. 37 (2020)
dc.relation.haspartRevista Ingenierías Universidad de Medellín; Vol. 19 Núm. 37 julio-diciembre 2020
dc.relation.urihttps://revistas.udem.edu.co/index.php/ingenierias/article/view/3035
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0
dc.sourceRevista Ingenierías Universidad de Medellín; Vol. 19 Núm. 37 (2020): julio-diciembre; 217-225
dc.subjectADN
dc.subjectSecuencia telomérica
dc.subjectTransporte electrónico
dc.subjectSistemas mesoscópicos
dc.subjectTight-binding
dc.subjectFunción de Green
dc.subjectDNA
dc.subjectTelomeric sequence
dc.subjectElectronic transport
dc.subjectMesoscopic systems
dc.subjectTight-binding
dc.subjectGreen's function
dc.subjectDNA
dc.subjectSequência telomérica
dc.subjectTransporte eletrônico
dc.subjectSistemas mesoscópicos
dc.subjectTight-binding
dc.subjectFunção de Green
dc.titleCurva característica de voltaje y corriente de un ADN autoensamblado
dc.titleCurrent-Voltage Characteristics of a Self-Assembled DNA
dc.titleCurva característica de voltaje y corriente de un ADN autoensamblado
dc.typeArticle
dc.identifier.doihttps://doi.org/10.22395/rium.v19n37a11
dc.relation.citationvolume19
dc.relation.citationissue37
dc.relation.citationstartpage217
dc.relation.citationendpage225
dc.audienceComunidad Universidad de Medellín
dc.publisher.facultyFacultad de Ingenierías
dc.coverageLat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degreesLong: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.placeMedellín
dc.relation.references"N. C. Seeman, and H. F. Sleiman, ""DNA nanotechnology,"" Nature Reviews Materials, vol. 3, p. 17068, 11 2018. DOI: 10.1038/natrevmats.2017.68.
dc.relation.referencesN. C. Seeman, ""DNA in a material world,"" Nature, vol. 421, no. 6921, p. 427, 2003. DOI: 10.1038/nature01406.
dc.relation.referencesG. M. Whitesides, and B. Grzybowski, ""Self-assembly at all scales,"" Science, vol. 295, no. 5564, pp. 2418-2421, 2002. DOI: 10.1126/science.1070821.
dc.relation.referencesJ. R McMillan et al., ""Protein Materials Engineering with DNA"" Acc. Chem. Res vol. 52, no. 7, p. 1939, 2019. DOI: 10.1021/acs.accounts.9b00165.
dc.relation.referencesJ. Nangreave, D. Han, Y. Liu, and H. Yan, ""DNA origami: a history and current perspective,""Current Opinion in Chemical Biology, vol. 14, no. 5, p. 608, 2010. DOI: 10.1016/j.cbpa.2010.06.182.
dc.relation.referencesA. Mangalum, M. Rahman, and M. L. Norton, ""From DNA Nanotechnology to Material Systems Engineering"" advanced materials, vol. 31, p. 1806294, 2019. DOI: 10.1002/adma.201806294.
dc.relation.referencesJ. Y. Kishi, T. E. Schaus, N. Gopalkrishnan, F. Xuan, and P. Yin, ""Programmable autonomous synthesis of single-stranded DNA,"" Nature Chemistry, vol. 10, p. 155, 2017. DOI: https://doi.org/10.1038/nchem.2872
dc.relation.referencesX. Liu, F. Zhang, X. Jing, M. Pan, P. Liu, W. Li, B. Zhu, J. Li, H. Chen, L. Wang, J. Lin, Y. Liu, D. Zhao, H. Yan, and C. Fan, ""Complex silica composite nanomaterials templated with DNA origami,"" Nature, vol. 559, no. 7715, p. 593, 2018. DOI: https://doi.org/10.1038/s41586-018-0332-7
dc.relation.referencesT. Lin, J. Yan, L. L. Ong, J. Robaszewski, H. D. Lu, Y. Mi, P. Yin, and B. Wei, ""Hierarchical assembly of DNA nanostructures based on four-way toehold-mediated strand displacement,"" Nano Letters, vol. 18, no. 8, p. 4791, 2018. DOI: https://doi.org/10.1021/acs.nanolett.8b01355
dc.relation.referencesD. Y. Tam, X. Zhuang, S. W. Wong, and P. K. Lo, ""Photoresponsive self-assembled DNA nanomaterials: Design, working principles, and applications,"" Small, vol. 15, no. 26, p. 1805481, 2019. DOI: 10.1002/smll.201805481.
dc.relation.referencesY. Li, and R. Schulman, ""DNA nanostructures that self-heal in serum,"" Nano Letters, vol. 19, no. 6, p. 3751, 2019. DOI: 10.1021/acs.nanolett.9b00888.
dc.relation.referencesC. Páez, and P. Schulz, ""Electronic localization at mesoscopic length scales: different definitions of localization and contact effects in a heuristic DNA model,"" Eur. Phys. J. B, vol. 86, p. 104, 2013. DOI: 10.1140/epjb/e2013-30728-9.
dc.relation.referencesR. Gutiérrez, S. Mandal, and G. Cuniberti, ""Quantum transport through a DNA wire in a dissipative environment,"" Nano Letters, vol. 5, no. 6, p. 1093, 2005. DOI: 10.1021/nl050623g.
dc.relation.referencesC. J. Páez, and P. A. Schulz, ""Delocalization of vibrational normal modes in double chains: Application to DNA systems,"" Microelectronics Journal, vol. 39, no. 11, p. 1222, 2008. DOI: 10.1016/j.mejo.2008.01.007.
dc.relation.referencesC. J. Páez, P. A. Schulz, N. R. Wilson, and R. A. Roemer, ""Robust signatures in the current-voltage characteristics of DNA molecules oriented between two graphene nanoribbon electrodes,"" New Journal of Physics, vol. 14, no. 9, p. 093049, 2012. DOI: 10.1088%2F1367-2630%2F14%2F9%2F093049.
dc.relation.referencesC.-T. Shih, S. Roche, and R. Roemer, ""Point-mutation effects on charge-transport properties f the tumor-suppressor gene p 53,"" Physical review letters, vol. 100, p. 018105, 02 2008. DOI: 10.1103/PhysRevLett.100.018105.
dc.relation.referencesC. J. P´aez, R. Rey-Gonz´alez, and P. A. Schulz, ""Macroscopic localization lengths of vibrational normal modes in a heuristic DNA model,"" Phys. Rev. B, vol. 81, p. 024203, Jan 2010. DOI: 10.1103/PhysRevB.81.024203.
dc.relation.referencesS. A. Wells, C.-T. Shih, and R. A. Römer, ""Modelling charge transport in DNA using transfer matrices with diagonal terms,"" vol. 23, p. 4138, 2009. DOI: 10.1142/S0217979209063328.
dc.relation.referencesJ. Rak, A. Voityuk, A. Márquez, and N. Rösch, ""The effect of pyrimidine bases on the hole-transfer coupling in DNA,"" vol. 106, no. 32, p. 7919, 2002. DOI: 10.1021/jp014261m.
dc.relation.referencesM. P. L. Sancho, J. M. L. Sancho, J. M. L. Sancho, and J. Rubio, ""Highly convergent schemes for the calculation of bulk and surface green functions,"" Journal of Physics F: Metal Physics, vol. 15, no. 4, p. 851, 1985. DOI: 10.1088%2F0305-4608%2F15%2F4%2F009.
dc.relation.referencesN. B. Larsen, H. Biebuyck, E. Delamarche, and B. Michel, ""Order in microcontact printed self-assembled monolayers,"" Journal of the American Chemical Society, vol. 119, no. 13, p. 3017, 1997. DOI: 10.1021/ja964090c.
dc.relation.referencesD. Porath, A. Bezryadin, S. De Vries, and C. Dekker, ""Direct measurement of electrical transport through DNA molecules,"" vol. 403, p. 635, 2000. DOI: 10.1038/35001029.
dc.relation.referencesH. Cohen, C. Nogues, R. Naaman, and D. Porath, ""Direct measurement of electrical transport through single DNA molecules of complex sequence,"" vol. 102, p. 11589, 2005. DOI: 10.1073/pnas.0505272102.
dc.relation.referencesC. Lewenkopf, and E. Mucciolo, ""The recursive green's function method for graphene,"" Journal of Computational Electronics, vol. 12, no. 203, p. 203, 2013. DOI: 10.1007/s10825-013-0458-7."
dc.rights.creativecommonsAttribution-NonCommercial-ShareAlike 4.0 International
dc.identifier.eissn2248-4094
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.localArtículo científico
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-ShareAlike 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-ShareAlike 4.0 International