Mostrar el registro sencillo del ítem

dc.contributor.authorContreras M.A
dc.contributor.authorMacaya L
dc.contributor.authorManrique V
dc.contributor.authorCamacho F
dc.contributor.authorGonzález A
dc.contributor.authorMontesinos R
dc.contributor.authorToledo J.R
dc.contributor.authorSánchez O.
dc.date.accessioned2022-09-14T14:33:26Z
dc.date.available2022-09-14T14:33:26Z
dc.date.created2021
dc.identifier.issn8873585
dc.identifier.urihttp://hdl.handle.net/11407/7369
dc.descriptionThe neutralization of tumor necrosis factor alpha (TNFα) with biopharmaceuticals is a successful therapy for inflammatory diseases. Currently, one of the main TNFα-antagonists is Etanercept, a dimeric TNF-R2 ectodomain. Considering that TNFα and its receptors are homotrimers, we proposed that a trimeric TNF-R2 ectodomain could be an innovative TNFα-antagonist. Here, the 3cTNFR2 protein was designed by the fusion of the TNF-R2 ectodomain with the collagen XV trimerization domain. 3cTNFR2 was produced in HEK293 cells and purified by immobilized metal affinity chromatography. Monomers, dimers, and trimers of 3cTNFR2 were detected. The interaction 3cTNFR2-TNFα was assessed. By microscale thermophoresis, the KD value for the interaction was 4.17 ± 0.88 nM, and complexes with different molecular weights were detected by size exclusion chromatography-high performance liquid chromatography. Moreover, 3cTNFR2 neutralized the TNFα-induced cytotoxicity totally in vitro. Although more studies are required to evaluate the anti-inflammatory effect, the results suggest that 3cTNFR2 could be a TNFα-antagonist agent. © 2021 Wiley Periodicals LLC.eng
dc.language.isoeng
dc.publisherJohn Wiley and Sons Inc
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85110256301&doi=10.1002%2fprot.26177&partnerID=40&md5=1d0e08e4dd8daefb08022099917d3757
dc.sourceProteins: Structure, Function and Bioinformatics
dc.titleA trivalent TNF-R2 as a new tumor necrosis factor alpha-blocking molecule
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicas
dc.type.spaArtículo
dc.identifier.doi10.1002/prot.26177
dc.subject.keywordProtein engineeringeng
dc.subject.keywordProtein–protein interactioneng
dc.subject.keywordTumor necrosis factor alphaeng
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationContreras, M.A., Recombinant Biopharmaceuticals Laboratory, Pharmacology Department, School of Biological Sciences, Universidad de Concepción, Concepción, Chile, Center for Biotechnology and Biomedicine Spa, Concepción, Chile
dc.affiliationMacaya, L., Recombinant Biopharmaceuticals Laboratory, Pharmacology Department, School of Biological Sciences, Universidad de Concepción, Concepción, Chile
dc.affiliationManrique, V., Recombinant Biopharmaceuticals Laboratory, Pharmacology Department, School of Biological Sciences, Universidad de Concepción, Concepción, Chile
dc.affiliationCamacho, F., Recombinant Biopharmaceuticals Laboratory, Pharmacology Department, School of Biological Sciences, Universidad de Concepción, Concepción, Chile
dc.affiliationGonzález, A., Recombinant Biopharmaceuticals Laboratory, Pharmacology Department, School of Biological Sciences, Universidad de Concepción, Concepción, Chile, Faculty of Basic Sciences, University of Medellin, Medellin, Colombia
dc.affiliationMontesinos, R., Biotechnology and Biopharmaceutical Laboratory, Pathophysiology Department, School of Biological Sciences, Universidad de Concepción, Concepción, Chile
dc.affiliationToledo, J.R., Biotechnology and Biopharmaceutical Laboratory, Pathophysiology Department, School of Biological Sciences, Universidad de Concepción, Concepción, Chile
dc.affiliationSánchez, O., Recombinant Biopharmaceuticals Laboratory, Pharmacology Department, School of Biological Sciences, Universidad de Concepción, Concepción, Chile, Center for Biotechnology and Biomedicine Spa, Concepción, Chile
dc.relation.referencesFalvo, J.V., Tsytsykova, A.V., Goldfeld, A.E., Transcriptional control of the TNF gene (2010) Curr Dir Autoimmun, 11, pp. 27-60. , https://doi.org/10.1159/000289196
dc.relation.referencesJarosz-Griffiths, H.H., Holbrook, J., Lara-Reyna, S., McDermott, M.F., TNF receptor signalling in autoinflammatory diseases (2019) Int Immunol, 31, pp. 639-648. , https://doi.org/10.1093/intimm/dxz024
dc.relation.referencesKalliolias, G.D., Ivashkiv, L.B., TNF biology, pathogenic mechanisms and emerging therapeutic strategies (2016) Nat Rev Rheumatol, 12 (1), pp. 49-62. , https://doi.org/10.1038/nrrheum.2015.169
dc.relation.referencesTracey, D., Klareskog, L., Sasso, E.H., Salfeld, J.G., Tak, P.P., Tumor necrosis factor antagonist mechanisms of action: a comprehensive review (2008) Pharmacol Ther, 117 (2), pp. 244-279. , https://doi.org/10.1016/j.pharmthera.2007.10.001
dc.relation.referencesMitoma, H., Horiuchi, T., Tsukamoto, H., Ueda, N., Molecular mechanisms of action of anti-TNF-α agents—comparison among therapeutic TNF-α antagonists (2018) Cytokine, 101, pp. 56-63. , https://doi.org/10.1016/j.cyto.2016.08.014
dc.relation.referencesWalsh, G., Biopharmaceutical benchmarks 2018 (2018) Nat Biotechnol, 36 (12), pp. 1136-1145. , https://doi.org/10.1038/nbt.4305
dc.relation.referencesTang, P., Hung, M.C., Klostergaard, J., Human pro-tumor necrosis factor is a homotrimer (1996) Biochemistry, 35 (25), pp. 8216-8225. , https://doi.org/10.1021/bi952182t
dc.relation.referencesBlack, R.A., Rauch, C.T., Kozlosky, C.J., A metalloproteinase disintegrin that releases tumour-necrosis factor-∅ from cells (1997) Nature, 385 (6618), pp. 729-733. , https://doi.org/10.1038/385729a0
dc.relation.referencesEck, M.J., Sprang, S.R., The structure of tumor necrosis factor-α at 2.6 Å resolution. Implications for receptor binding (1989) J Biol Chem, 264 (29), pp. 17595-17605. , https://doi.org/10.1016/S0021-9258(18)71533-0
dc.relation.referencesChan, F.K.M., Chun, H.J., Zheng, L., Siegel, R.M., Bui, K.L., Lenardo, M.J., A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling (2000) Science (80–), 288 (5475), pp. 2351-2354. , https://doi.org/10.1126/science.288.5475.2351
dc.relation.referencesMukai, Y., Nakamura, T., Yoshikawa, M., Solution of the structure of the TNF-TNFR2 complex (2010) Sci Signal, 3 (148), p. ra83.. , https://doi.org/10.1126/scisignal.2000954
dc.relation.referencesWirz, J.A., Boudko, S.P., Lerch, T.F., Chapman, M.S., Bächinger, H.P., Crystal structure of the human collagen XV trimerization domain: a potent trimerizing unit common to multiplexin collagens (2011) Matrix Biol, 30 (1), pp. 9-15. , https://doi.org/10.1016/j.matbio.2010.09.005
dc.relation.referencesCuesta, Á.M., Sánchez-Martín, D., Blanco-Toribio, A., Improved stability of multivalent antibodies containing the human collagen XV trimerization domain (2012) MAbs, 4 (2), pp. 226-232. , https://doi.org/10.4161/mabs.4.2.19140
dc.relation.referencesToledo, J.R., Prieto, Y., Oramas, N., Sánchez, O., Polyethylenimine-based transfection method as a simple and effective way to produce recombinant lentiviral vectors (2009) Appl Biochem Biotechnol, 157 (3), pp. 538-544. , https://doi.org/10.1007/s12010-008-8381-2
dc.relation.referencesLaemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227 (5259), pp. 680-685. , https://doi.org/10.1038/227680a0
dc.relation.referencesContreras, M.A., Macaya, L.A., Neira, P.J., New insights on the interaction mechanism of rhTNF with its antagonists adalimumab and etanercept (2020) Biochem J, 477, pp. 3299-3311. , https://doi.org/10.1101/2020.06.21.163824
dc.relation.referencesMosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays (1983) J Immunol Methods, 65 (1-2), pp. 55-63. , https://doi.org/10.1016/0022-1759(83)90303-4
dc.relation.referencesChen, X., Zaro, J.L., Shen, W.C., Fusion protein linkers: property, design and functionality (2013) Adv Drug Deliv Rev, 65 (10), pp. 1357-1369. , https://doi.org/10.1016/j.addr.2012.09.039
dc.relation.referencesKlein, J.S., Jiang, S., Galimidi, R.P., Keeffe, J.R., Bjorkman, P.J., Regan, L., Design and characterization of structured protein linkers with differing flexibilities (2014) Protein Eng Des Sel, 27 (10), pp. 325-330. , https://doi.org/10.1093/protein/gzu043
dc.relation.referencesKuhlman, B., Bradley, P., Advances in protein structure prediction and design (2019) Nat Rev Mol Cell Biol, 20, pp. 681-697. , https://doi.org/10.1038/s41580-019-0163-x
dc.relation.referencesBravo, F.E., Parra, N.C., Camacho, F., Fluorescence-assisted sequential insertion of transgenes (FASIT): an approach for increasing specific productivity in mammalian cells (2020) Sci Rep, 10, pp. 1-11. , https://doi.org/10.1038/s41598-020-69709-1
dc.relation.referencesLai, T., Yang, Y., Ng, S.K., Advances in mammalian cell line development technologies for recombinant protein production (2013) Pharmaceuticals, 6 (5), pp. 579-603. , https://doi.org/10.3390/ph6050579
dc.relation.referencesPennica, D., Van Lam, T., Weber, R.F., Biochemical characterization of the extracellular domain of the 75-kilodalton tumor necrosis factor receptor (1993) Biochemistry, 32 (12), pp. 3131-3138. , https://doi.org/10.1021/bi00063a027
dc.relation.referencesCui, X., Chang, L., Li, Y., Trivalent soluble TNF receptor, a potent TNF-α antagonist for the treatment collagen-induced arthritis (2018) Sci Rep, 8 (1), pp. 1-11. , https://doi.org/10.1038/s41598-018-25652-w
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem