Mostrar el registro sencillo del ítem

dc.contributor.authorGómez-Urrea H.A
dc.contributor.authorCardona J.G
dc.contributor.authorCaro-Lopera F.J
dc.contributor.authorMora-Ramos M.E.
dc.date.accessioned2023-10-24T19:24:24Z
dc.date.available2023-10-24T19:24:24Z
dc.date.created2023
dc.identifier.issn20408978
dc.identifier.urihttp://hdl.handle.net/11407/7950
dc.description.abstractPhotonic band gap widths and slow-light optical guided modes are theoretically investigated for Bravais-Moiré (BM) photonic crystals (PCs) made of cylindrical dielectric cores which are formed from the combination of two square Bravais lattices. The Moiré pattern forms due to a commensurable rotation of one of these lattices with respect to the other. The analysis of gap maps is made versus the radii of dielectric cores-both rotated and unrotated-contained in the BM unit cell (UC). Guided modes are considered within the framework of coupled-resonator optical waveguides (CROWs), built from the generation of a point defect chain along the direction of electromagnetic wave propagation. For the analyzed structures, rather wide photonic band gaps were found. It was noticed that changing the core radii can significantly affect the dielectric contrast in the UC, leading to wider gaps. In addition, due to the kind of crystal cell structure considered, guided modes with group velocities smaller than those typically observed in PCs with simple square lattices were found for the investigated CROWs. © 2022 IOP Publishing Ltd.eng
dc.language.isoeng
dc.publisherInstitute of Physics
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85151042360&doi=10.1088%2f2040-8986%2faca0aa&partnerID=40&md5=104c893a504d9c0a678a7f413474a6d1
dc.sourceJ. Opt.
dc.sourceJournal of Optics (United Kingdom)eng
dc.subject2D photonic crystaleng
dc.subjectBravais-Moiré unit celleng
dc.subjectCoupled resonator optical waveguideeng
dc.subjectPhotonic gap mappingeng
dc.subjectSlow-lighteng
dc.titlePhotonic band gaps and waveguide slow-light propagation in Bravais-Moiré two-dimensional photonic crystalseng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicasspa
dc.type.spaArtículo
dc.identifier.doi10.1088/2040-8986/aca0aa
dc.relation.citationvolume25
dc.relation.citationissue2
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationGómez-Urrea, H.A., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationCardona, J.G., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Facultad de Ciencias Básicas, Universidad Tecnológica de Pereira, Pereira, Colombia
dc.affiliationCaro-Lopera, F.J., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationMora-Ramos, M.E., Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Morelos, Cuernavaca, CP 62209, Mexico
dc.relation.referencesMookherjea, S, Yariv, A, Coupled resonator optical waveguides (2002) IEEE J. Sel. Top. Quantum Electron, 8, p. 448
dc.relation.referencesDonnelly, E, La Spada, L, Electromagnetic and thermal nanostructures: from waves to circuits (2020) Eng. Res. Express, 2, p. 015045
dc.relation.referencesLa Spada, L, Vegni, L, Near-zero-index wires (2017) Opt. Express, 25, p. 23699
dc.relation.referencesPacheco-Peña, V, Engheta, N, Kuznetsov, S, Gentselev, A, Beruete, M, All-metallic epsilon-near-zero graded-index converging lens at terahertz frequencies (2018) 12th European Conf. on Antennas and Propagation (EuCAP 2018), 1. , vol
dc.relation.referencesGreybush, N J, Pacheco-Peña, V, Engheta, N, Murray, C B, Kagan, C R, Plasmonic optical and chiroptical response of self-assembled Au nanorod equilateral trimmers (2019) ACS Nano, 13, p. 1617
dc.relation.referencesEstakhri, N M, Edwards, B, Engheta, N, Inverse-designed metastructures that solve equations (2019) Science, 363, p. 1333
dc.relation.referencesLa Spada, L, Spooner, C, Haq, S, Hao, Y, Curvilinear metasurfaces for surface wave manipulation (2019) Sci. Rep, 9, p. 3107
dc.relation.referencesLalegani, Z, Seyyed Ebrahimi, S A, Hamawandi, B, La Spada, L, Toprak, M S, Modeling, design and synthesis of gram-scale monodispersed silver nanoparticles using microwave-assisted polyol process for metamaterial applications (2020) Opt. Mater, 108, p. 110381
dc.relation.referencesGuo, Z, Jiang, H, Chen, H, Zero-index and hyperbolic metacavities: fundamentals and applications (2022) J. Appl. Phys, 55, p. 083001
dc.relation.referencesLalegani, Z, Seyyed Ebrahimi, S A, Hamawandi, B, La Spada, L, Batili, H, Toprak, M S, Targeted dielectric coating of silver nanoparticles with silica to manipulate optical properties for metasurface applications (2022) Mater. Chem. Phys, 287, p. 126250
dc.relation.referencesPacheco-Peña, V, Beruete, M, Rodríguez-Ulibarri, P, Engheta, N, On the performance of an ENZ-based sensor using transmission line theory and effective medium approach (2019) New J. Phys, 21, p. 043056
dc.relation.referencesAkbari, M, Shahbazzadeh, M J, La Spada, L, Khajehzadeh, A, The graphene field effect transistor modeling based on an optimized ambipolar virtual source model for DNA detection (2021) Appl. Sci, 11, p. 8114
dc.relation.referencesJoannopoulos, J D, (2007) Photonic Crystals: Molding the Flow of Light, , (Princeton, NJ: Princeton University Press)
dc.relation.referencesYablonovitch, E, Inhibited spontaneous emission in solid-state physics and electronics (1987) Phys. Rev. Lett, 58, p. 2059
dc.relation.referencesJohn, S, Strong localization of photons in certain disordered dielectric superlattices (1987) Phys. Rev. Lett, 58, p. 2486
dc.relation.referencesIliew, R, Etrich, C, Pertsch, T, Lederer, F, Slow-light enhanced collinear second-harmonic generation in two dimensional photonic crystals (2008) Phys. Rev. B, 77, p. 115124
dc.relation.referencesDutta, H S, Goyal, A K, Srivastava, V, Pal, S, Coupling light in photonic crystal waveguides: a review (2016) Photon. Nanostruct, 20, p. 41
dc.relation.referencesBaba, T, Mori, D, Slow light engineering in photonic crystals (2007) J. Phys. D: Appl. Phys, 40, p. 2659
dc.relation.referencesBaba, T, Slow light in photonic crystals (2008) Nat. Photon, 2, p. 465
dc.relation.referencesKrauss, T F, Slow light in photonic crystal waveguides (2007) J. Phys. D: Appl. Phys, 40, p. 2666
dc.relation.referencesTang, L, Song, D, Xia, S, Sh, X, J Yan, M, Hu, Y, Xu, J, Chen, Z, Photonic flat-band lattices and unconventional light localization (2020) Nanophotonics, 9, p. 1161. , W, and
dc.relation.referencesEngelen, R J P, Sugimoto, Y, Watanabe, Y, Korterik, J P, Ikeda, N, van Hulst, N F, Asakawa, K, Kuipers, L, The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides (2006) Opt. Express, 14, p. 1658
dc.relation.referencesSukhoivanov, I A, Guryev, I V, (2009) Photonic Crystals: Physics and Practical Modeling 1st edn, , (Berlin: Springer)
dc.relation.referencesOlivier, S, Smith, C, Rattier, M, Benisty, H, Weisbuch, C, Krauss, T, Houdre, R, Oesterle, U, Miniband transmission in a photonic crystal coupled-resonator optical waveguide (2001) Opt. Lett, 26, p. 1019
dc.relation.referencesYariv, A, Xu, Y, Lee, R K, Scherer, A, Coupled-resonator optical waveguide: a proposal and analysis (1999) Opt. Lett, 24, p. 711
dc.relation.referencesCh, J, N Johnson, P, Chong, H M H, Jugessur, A S, Day, S, Gallagher, D, De La Rue, R M, Transmission of photonic crystal coupled-resonator waveguide (PhCCRW) structure enhanced via mode matching (2005) Opt. Express, 13, p. 2295
dc.relation.referencesWang, Y, Coupled-resonator optical waveguides in photonic crystals with Archimedean-like tilings (2006) Europhys. Lett, 74, p. 261
dc.relation.referencesMartínez, A, García, A, Sanchis, P, Martí, J, Group velocity and dispersion model of coupled-cavity waveguides in photonic crystals (2003) J. Opt. Soc. Am. A, 20, p. 147
dc.relation.referencesKarle, T J, Chai, Y J, Morgan, C N, White, I H, Krauss, T F, Observation of pulse compression in photonic crystal coupled cavity waveguides (2004) J. Lightwave Technol, 22, p. 514
dc.relation.referencesMookherjea, S, Yariv, A, Kerr-stabilized super-resonant modes in coupled-resonator optical waveguides (2002) Phys. Rev. E, 66, p. 046610
dc.relation.referencesJin, C J, Sun, Z W, Cheng, B Y, Li, Z L, Zhang, D Z, Microcavities composed of point defects and waveguides in two-dimensional photonic crystals (2001) Opt. Commun, 188, p. 255
dc.relation.referencesCh, J, B Man, Li, Z, Zhang, D, Two-dimensional dodecagonal and decagonal quasiperiodic photonic crystals in the microwave region (2000) Phys. Rev. B, 61, p. 10762. , C, B, and
dc.relation.referencesCheng, S S M, Li, L-M, Chan, C T, Zhang, Z Q, Defect and transmission properties of two-dimensional quasiperiodic photonic band-gap systems (1999) Phys. Rev. B, 59, p. 4091
dc.relation.referencesWang, Y, Jin, C, Han, S, Cheng, B, Zhang, D, Defect modes in two-dimensional quasiperiodic photonic crystal (2004) Jpn. J. Appl. Phys, 43, p. 1666
dc.relation.referencesDavid, S, Chelnokov, A, Lourtioz, J-M, Wide angularly isotropic photonic bandgaps obtained from two-dimensional photonic crystals with Archimedean-like tilings (2000) Opt. Lett, 25, p. 1001
dc.relation.referencesJovanović, D, Gajić, R, Hingerl, K, Refraction and band isotropy in 2D square-like Archimedean photonic crystal lattices (2008) Opt. Express, 16, p. 4048
dc.relation.referencesBalci, S, Karabiyik, M, Kosabas, A, Kosabas, C, Aydinli, A, Coupled plasmonic cavities on Moiré surfaces (2010) Plasmonics, 5, p. 429
dc.relation.referencesBalci, S, Kocabas, A, Kocabas, C, Aydinli, A, Localization of surface plasmon polaritons in hexagonal arrays of Moiré cavities (2011) Appl. Phys. Lett, 98, p. 031101
dc.relation.referencesLubin, S M, Hryn, A J, Huntington, M D, Engel, C J, Odom, T W, Quasiperiodic Moiré plasmonic crystals (2011) ACS Nano, 98, p. 031101
dc.relation.referencesDong, K, Zhang, T, Li, J, Wang, Q, Yang, F, Rho, Y, Wang, D, Yao, J, Flat bands in magic-angle bilayer photonic crystals at small twists (2021) Phys. Rev. Lett, 126, p. 223601
dc.relation.referencesLou, B, Zhao, N, Minkov, M, Guo, C, Orenstein, M, Fan, S, Theory for twisted bilayer photonic crystal slabs (2021) Phys. Rev. Lett, 126, p. 136101
dc.relation.referencesTang, H, Du, F, Carr, S, DeVault, C, Mello, O, Mazur, E, Modeling the optical properties of twisted bilayer photonic crystals (2021) Light Sci. Appl, 10, p. 157
dc.relation.referencesGómez-Urrea, H A, Ospina-Medina, M C, Correa-Abad, J D, Mora-Ramos, M E, Caro-Lopera, F J, Tunable band structure in 2D Bravais-Moiré photonic crystal lattices (2020) Opt. Commun, 459, p. 125081
dc.relation.referencesGómez-Urrea, H A, Bareño-Silva, J, Caro-Lopera, F J, Mora-Ramos, M E, The influence of shape and orientation of scatters on the photonic band gap in two-dimensional Bravais-Moiré lattices Photon (2020) Nanostruct, 42, p. 100845
dc.relation.referencesHennighausen, Z, Kar, S, Twistronics: a turning point in 2D quantum materials (2021) Electron. Struct, 3, p. 014004
dc.relation.referencesCao, Y, Fatemi, V, Fang, S, Watanabe, K, Taniguchi, T, Kaxiras, E, Jarillo-Herrero, P, Unconventional superconductivity in magic-angle graphene superlattices (2018) Nature, 556, p. 43
dc.relation.referencesShallcross, S, Sharma, S, Kandelaki, E, Pankratov, O A, Electronic structure of turbostratic graphene (2010) Phys. Rev. B, 81, p. 165105
dc.relation.referencesShallcross, S, Sharma, S, Pankratov, O A, Document quantum interference at the twist boundary in graphene (2008) Phys. Rev. Lett, 101, p. 056803
dc.relation.referencesShallcross, S, Sharma, S, Pankratov, O A, Erratum: electronic structure of turbostratic graphene (2010) Phys. Rev. B, 81, p. 239904. , (2010 Phys. Rev. B 81 165105)
dc.relation.referencesCaro-Lopera, F J, (2013) Bravais-Moiré theory Technical Report University of Medellin
dc.relation.referencesTiutiunnyk, A, Duque, C A, Caro-Lopera, F J, Mora-Ramos, M E, Correa, J D, Opto-electronic properties of twisted bilayer graphene quantum dots (2019) Physica E, 112, pp. 36-48
dc.relation.referencesLeon, A M, Velasquez, E A, Caro-Lopera, F, Mejia-Lopez, J, Tuning magnetic order in CrI3 bilayers via Moiré patterns (2022) Adv. Theory Simul, 5, p. 2100307
dc.relation.referencesCOMSOL Multiphysics® v. 5.6, , www.comsol.com, (Stockholm, Sweden: COMSOL AB) (available at)
dc.relation.referencesCOMSOL Multiphysics reference guide 2012, , (Stockholm, Sweden)
dc.relation.referencesCOMSOL Multiphysics users guide 2012, , (Stockholm, Sweden)
dc.relation.referencesJukam, N, Sherwin, M S, Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si (2003) Appl. Phys. Lett, 83, p. 21
dc.relation.referencesLi, Z, Zhang, Y, Li, B, Terahertz photonic crystal switch in silicon based on self-imaging principle (2006) Opt. Express, 14, p. 3887
dc.relation.referencesGrischkowsky, D, Keiding, S, van Exter, M, Fattinger, C, Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors (1990) J. Opt. Soc. Am. B, 7, p. 2006
dc.relation.referencesXu, Y, Lee, R K, Yariv, A, Propagation and second harmonic generation of electromagnetic waves in a coupled-resonator optical waveguide (2000) J. Opt. Soc. Am. B, 17, p. 387
dc.relation.referencesSoljačić, M, Johnson, S G, Sh, F, M Ippen, Joannopoulos, J D, Photonic-crystal slow-light enhancement of nonlinear phase sensitivity (2002) J. Opt. Soc. Am. B, 19, p. 2052. , I, E and
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem