dc.contributor.author | Gómez-Urrea H.A | |
dc.contributor.author | Cardona J.G | |
dc.contributor.author | Mora-Ramos M.E | |
dc.contributor.author | Duque C.A. | |
dc.date.accessioned | 2023-10-24T19:24:36Z | |
dc.date.available | 2023-10-24T19:24:36Z | |
dc.date.created | 2023 | |
dc.identifier.issn | 24103896 | |
dc.identifier.uri | http://hdl.handle.net/11407/7979 | |
dc.description.abstract | In this study, we perform a theoretical study of light propagation properties in two-dimensional square photonic crystals (PCs) following Bravais–Moiré (BM) patterns composed of copper oxide high-temperature superconductors (HTSCs). The BM PCs are made of cylindrical cores formed from the combination of two square Bravais lattices. The Moiré pattern forms due to a commensurable rotation of one of these lattices with respect to the other. The dielectric function of the superconducting material is modeled by the two-fluid Gorter–Casimir theory. We report on the corresponding gap, the mapping as a function of the radius of dielectric cores, as well as the dispersion relations of TM modes for BM PCs and for the waveguide system built of defect lines within such a crystal. The BM PCs were composed of copper oxide HTSCs, which exhibit large tunability in terms of temperature. © 2023 by the authors. | eng |
dc.language.iso | eng | |
dc.publisher | MDPI | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85163641027&doi=10.3390%2fcondmat8020051&partnerID=40&md5=5c207e608e0e86992646deeb2efa836b | |
dc.source | Condens. Matter | |
dc.source | Condensed Matter | eng |
dc.subject | 2D photonic crystal | eng |
dc.subject | Bravais–Moiré | eng |
dc.subject | Coupled resonator optical waveguide | eng |
dc.subject | High temperature superconductors | eng |
dc.subject | Photonic gap mapping | eng |
dc.subject | Slow-light | eng |
dc.title | Tunable Photonic Band Gaps in Two-Dimensional Bravais–Moiré Photonic Crystal Composed of High-Tc Superconductors | eng |
dc.type | Article | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ciencias Básicas | spa |
dc.type.spa | Artículo | |
dc.identifier.doi | 10.3390/condmat8020051 | |
dc.relation.citationvolume | 8 | |
dc.relation.citationissue | 2 | |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.affiliation | Gómez-Urrea, H.A., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia | |
dc.affiliation | Cardona, J.G., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia | |
dc.affiliation | Mora-Ramos, M.E., Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Morelos, Cuernavaca, CP 62209, Mexico | |
dc.affiliation | Duque, C.A., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, 050010, Colombia | |
dc.relation.references | Liu, C.-L., Zhang, H.-F., Chen, Y.-Q., Enlarged the omnidirectional Bragg gap by one-dimensional superconductor-dielectric photonic crystals with ternary Thue-Morse aperiodic structure (2013) Optik, 124, p. 5811 | |
dc.relation.references | Rahimi, H., Analysis of photonic spectra in Thue–Morse, Double-Period and Rudin-Shapiro quasirregular structures made of high temperature superconductors in visible range (2016) Opt. Mater, 57, p. 264 | |
dc.relation.references | Gómez-Urrea, H.A., Escorcia-García, J., Duque, C.A., Mora-Ramos, M.E., Analysis of light propagation in quasiregular and hybrid Rudin–Shapiro one-dimensional photonic crystals with superconducting layers (2017) Photonics Nanostruct, 1, pp. 1-10 | |
dc.relation.references | Trabelsi, Y., Output multichannel optical filter based on hybrid photonic quasicrystals containing a high-Tc superconductor (2019) Photonics Nanostruct, 100, p. 724 | |
dc.relation.references | Raymond Ooi, C.H., Au Yeung, T.C., Lim, T.-K., Kam, C.H., Two-dimensional superconductor-dielectric photonic crystal (1999) Proc. SPIE, 3899, p. 278 | |
dc.relation.references | Chen, Y.-B., Zhang, C., Zhu, Y.-Y., Zhu, S.-N., Ming, N.-B., Tunable photonic crystals with superconductor constituents (2002) Mater. Lett, 55, p. 12 | |
dc.relation.references | Takeda, H., Yoshino, K., Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide high-temperature superconductors (2003) Phys. Rev. B, 67, p. 245109 | |
dc.relation.references | Cheng, C., Xu, C., Zhou, T., Zhang, X.-F., Xu, Y., Temperature dependent complex photonic band structures in two-dimensional photonic crystals composed of high-temperature superconductors (2008) J. Phys. Condens. Matter, 20, p. 275203 | |
dc.relation.references | Berman, O.L., Boyko, V.S., Kezerashvili, R.Y., Lozovik, Y.E., Monochromatic infrared wave propagation in 2D superconductor-dielectric photonic crystal (2009) Laser Phys, 19, pp. 2035-2040 | |
dc.relation.references | Barvestani, J., Rezaei, E., Soltani Vala, A., Tunability of waveguide modes in two-dimensional photonic crystals based on superconducting materials (2013) Opt. Commun, 297, p. 74 | |
dc.relation.references | El-Naggar, S.A., Elsayed, H.A., Aly, A.H., Maximization of Photonic Bandgaps in Two-Dimensional Superconductor Photonic Crystals (2014) J. Supercond. Nov. Magn, 27, p. 1615 | |
dc.relation.references | Hashemi, R., Barvestani, J., Superconducting Point Defect in a Two-Dimensional Photonic Crystal (2014) J. Supercond. Nov. Magn, 27, p. 371 | |
dc.relation.references | Liu, W.-G., Pan, F.-M., Cai, L.-W., Photonic band gap of superconductor-medium structure: Two-dimensional triangular lattice (2014) Phys. C, 500, p. 4 | |
dc.relation.references | Aly, A.H., Elsayed, H.A., El-Naggar, S.A., The properties of cutoff frequency in two-dimensional superconductor photonic crystals (2014) J. Mod. Opt, 61, p. 1064 | |
dc.relation.references | Diaz-Valencia, B.F., Calero, J.M., Photonic band gaps of a two-dimensional square lattice composed by superconducting hollow rods (2014) Phys. C, 505, p. 74 | |
dc.relation.references | Zhang, H.F., Liu, S., The Tunable Omnidirectional Reflector Based on Two-Dimensional Photonic Crystals With Superconductor Constituents (2015) IEEE J. Sel. Top. Quantum Electron, 21 | |
dc.relation.references | Diaz-Valencia, B.F., Calero, J.M., Analysis of Photonic Band Gaps in a Two-Dimensional Triangular Lattice with Superconducting Hollow Rods (2017) J. Low Temp. Phys, 186, p. 275 | |
dc.relation.references | Zhang, H.-F., The Mie resonance and dispersion properties in the two-dimensional superconductor photonic crystals with fractal structure (2018) Phys. C, 550, p. 65 | |
dc.relation.references | Elsayed, H.A., Photonic band gaps properties of two-dimensional ternary superconductor photonic crystals (2019) Surf. Rev. Lett, 26, p. 1850152 | |
dc.relation.references | Hao, J.J., Ju, L., Liu, Y.J., Du, W.-C., Gu, K.-D., Yang, H.-W., Research on Transmission Characteristics of Two-Dimensional Superconducting Photonic Crystal in THz-Waves (2020) Plasmonics, 15, p. 1083 | |
dc.relation.references | Fan, S., Villeneuve, P.R., Joannopoulos, J.D., Large omnidirectional band gaps in metallodielectric photonic crystals (1996) Phys. Rev. B, 54, p. 11245. , 9984909 | |
dc.relation.references | Halevi, P., Ramos-Mendieta, F., Tunable Photonic Crystals with Semiconducting Constituents (2000) Phys. Rev. Lett, 85, p. 1875. , 10970636 | |
dc.relation.references | Wang, Y., Coupled-resonator optical waveguides in photonic crystals with Archimedean-like tilings (2006) Europhys. Lett, 74, p. 261 | |
dc.relation.references | Iliew, R., Etrich, C., Pertsch, T., Lederer, F., Slow-light enhanced collinear second-harmonic generation in two dimensional photonic crystals (2008) Phys. Rev. B, 77, p. 115124 | |
dc.relation.references | Olivier, S., Smith, C., Rattier, M., Benisty, H., Weisbuch, C., Krauss, T., Houdre, R., Oesterle, U., Miniband transmission in a photonic crystal coupled-resonator optical waveguide (2001) Opt. Lett, 26, p. 1019. , 18040520 | |
dc.relation.references | Gómez-Urrea, H.A., Cardona, J.G., Caro-Lopera, F.J., Mora-Ramos, M.E., Photonic band gaps and waveguide slow-light propagation in Bravais–Moiré two-dimensional photonic crystals (2023) J. Opt, 25, p. 025101 | |
dc.relation.references | David, S., Chelnokov, A., Lourtioz, J., Wide angularly isotropic photonic bandgaps obtained from two-dimensional photonic crystals with Archimedean-like tilings (2000) Opt. Lett, 25, p. 1001 | |
dc.relation.references | Ueda, K., Dotera, T., Gemma, T., Photonic band structure calculations of two- dimensional Archimedean tiling patterns (2007) Phys. Rev. B, 75, p. 195122 | |
dc.relation.references | Jovanović, Đ., Gajić, R., Hingerl, K., Refraction and band isotropy in 2D square-like Archimedean photonic crystal lattices (2008) Opt. Express, 16, p. 4048 | |
dc.relation.references | Balci, S., Karabiyik, M., Kocabas, A., Kocabas, C., Aydinli, A., Coupled plasmonic cavities on Moiré surfaces (2010) Plasmonics, 5, p. 429 | |
dc.relation.references | Balci, S., Kocabas, A., Kocabas, C., Aydinli, A., Localization of surface plasmon polaritons in hexagonal arrays of Moiré cavities (2011) Appl. Phys. Lett, 98, p. 031101 | |
dc.relation.references | Lubin, S.M., Hryn, A.J., Huntington, M.D., Engel, C.J., Odom, T.W., Quasiperiodic Moiré plasmonic crystals (2013) ACS Nano, 7, p. 11035. , 24228849 | |
dc.relation.references | Gómez-Urrea, H.A., Bareño-Silva, J., Caro-Lopera, F.J., Mora-Ramos, M.E., The influence of shape and orientation of scatters on the photonic band gap in two-dimensional Bravais-Moiré lattices (2020) Photonics Nanostruct, 42, p. 100845 | |
dc.relation.references | Gómez-Urrea, H.A., Ospina-Medina, M.C., Correa-Abad, J.D., Mora-Ramos, M.E., Caro-Lopera, F.J., Tunable band structure in 2D Bravais-Moiré photonic crystal lattices (2020) Opt. Commun, 459, p. 125081 | |
dc.relation.references | Nasidi, I., Hao, R., Chen, J., Li, E., Jin, S., Photonic Moiré lattice waveguide with a large slow light bandwidth and delay-bandwidth product (2022) Appl. Opt, 61, p. 5776. , 36255812 | |
dc.relation.references | Nasidi, I., Hao, R., Jin, S., Li, E., Flat bands and quasi-bound states in the continuum in a photonic Moiré lattice (2022) J. Opt. Soc. Am. B, 40, p. 260 | |
dc.relation.references | Nasidi, I., Hao, R., Jin, S., Li, E., Inverse design of a photonic Moiré lattice waveguide towards improved slow light performances (2023) Appl. Opt, 62, p. 2651 | |
dc.relation.references | Lou, B., Zhao, N., Minkov, M., Guo, C., Orenstein, M., Fan, S., Theory for Twisted Bilayer Photonic Crystal Slabs (2021) Phys. Rev. Lett, 126, p. 136101 | |
dc.relation.references | Dong, K., Zhang, T., Li, J., Wang, Q., Yang, F., Rho, Y., Flat Bands in Magic-Angle Bilayer Photonic Crystals at Small Twists (2021) Phys. Rev. Lett, 126, p. 223601 | |
dc.relation.references | John SG, J., Joannopoulos, D., Winn, J.N., Meade, R.D., (2008) Photonic Crystals: Molding the Flow of Light, , 2nd ed., Princeton University of Press, Princeton, NJ, USA | |
dc.relation.references | (2021) Multiphysics, v. 5.6, , COMSOL AB, Stockholm, Sweden | |
dc.relation.references | (2012) Multiphysics Reference Guide, , COMSOL, Stockholm, Sweden | |
dc.relation.references | (2012) Multiphysics Users Guide, , COMSOL, Stockholm, Sweden | |
dc.relation.references | Norman, M.R., Chubukov, A.V., High-frequency behavior of the infrared conductivity of cuprates (2006) Phys. Rev. B, 73, p. 140501 | |
dc.relation.references | Lee, W.M., Hui, P.M., Stroud, D., Propagating photonic modes below the gap in a superconducting composite (1995) Phys. Rev. B, 51, p. 8634. , 9977486 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín | |