Mostrar el registro sencillo del ítem

dc.contributor.authorGómez-Urrea H.A
dc.contributor.authorCardona J.G
dc.contributor.authorMora-Ramos M.E
dc.contributor.authorDuque C.A.
dc.date.accessioned2023-10-24T19:24:36Z
dc.date.available2023-10-24T19:24:36Z
dc.date.created2023
dc.identifier.issn24103896
dc.identifier.urihttp://hdl.handle.net/11407/7979
dc.description.abstractIn this study, we perform a theoretical study of light propagation properties in two-dimensional square photonic crystals (PCs) following Bravais–Moiré (BM) patterns composed of copper oxide high-temperature superconductors (HTSCs). The BM PCs are made of cylindrical cores formed from the combination of two square Bravais lattices. The Moiré pattern forms due to a commensurable rotation of one of these lattices with respect to the other. The dielectric function of the superconducting material is modeled by the two-fluid Gorter–Casimir theory. We report on the corresponding gap, the mapping as a function of the radius of dielectric cores, as well as the dispersion relations of TM modes for BM PCs and for the waveguide system built of defect lines within such a crystal. The BM PCs were composed of copper oxide HTSCs, which exhibit large tunability in terms of temperature. © 2023 by the authors.eng
dc.language.isoeng
dc.publisherMDPI
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85163641027&doi=10.3390%2fcondmat8020051&partnerID=40&md5=5c207e608e0e86992646deeb2efa836b
dc.sourceCondens. Matter
dc.sourceCondensed Mattereng
dc.subject2D photonic crystaleng
dc.subjectBravais–Moiréeng
dc.subjectCoupled resonator optical waveguideeng
dc.subjectHigh temperature superconductorseng
dc.subjectPhotonic gap mappingeng
dc.subjectSlow-lighteng
dc.titleTunable Photonic Band Gaps in Two-Dimensional Bravais–Moiré Photonic Crystal Composed of High-Tc Superconductorseng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicasspa
dc.type.spaArtículo
dc.identifier.doi10.3390/condmat8020051
dc.relation.citationvolume8
dc.relation.citationissue2
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationGómez-Urrea, H.A., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationCardona, J.G., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationMora-Ramos, M.E., Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Morelos, Cuernavaca, CP 62209, Mexico
dc.affiliationDuque, C.A., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, 050010, Colombia
dc.relation.referencesLiu, C.-L., Zhang, H.-F., Chen, Y.-Q., Enlarged the omnidirectional Bragg gap by one-dimensional superconductor-dielectric photonic crystals with ternary Thue-Morse aperiodic structure (2013) Optik, 124, p. 5811
dc.relation.referencesRahimi, H., Analysis of photonic spectra in Thue–Morse, Double-Period and Rudin-Shapiro quasirregular structures made of high temperature superconductors in visible range (2016) Opt. Mater, 57, p. 264
dc.relation.referencesGómez-Urrea, H.A., Escorcia-García, J., Duque, C.A., Mora-Ramos, M.E., Analysis of light propagation in quasiregular and hybrid Rudin–Shapiro one-dimensional photonic crystals with superconducting layers (2017) Photonics Nanostruct, 1, pp. 1-10
dc.relation.referencesTrabelsi, Y., Output multichannel optical filter based on hybrid photonic quasicrystals containing a high-Tc superconductor (2019) Photonics Nanostruct, 100, p. 724
dc.relation.referencesRaymond Ooi, C.H., Au Yeung, T.C., Lim, T.-K., Kam, C.H., Two-dimensional superconductor-dielectric photonic crystal (1999) Proc. SPIE, 3899, p. 278
dc.relation.referencesChen, Y.-B., Zhang, C., Zhu, Y.-Y., Zhu, S.-N., Ming, N.-B., Tunable photonic crystals with superconductor constituents (2002) Mater. Lett, 55, p. 12
dc.relation.referencesTakeda, H., Yoshino, K., Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide high-temperature superconductors (2003) Phys. Rev. B, 67, p. 245109
dc.relation.referencesCheng, C., Xu, C., Zhou, T., Zhang, X.-F., Xu, Y., Temperature dependent complex photonic band structures in two-dimensional photonic crystals composed of high-temperature superconductors (2008) J. Phys. Condens. Matter, 20, p. 275203
dc.relation.referencesBerman, O.L., Boyko, V.S., Kezerashvili, R.Y., Lozovik, Y.E., Monochromatic infrared wave propagation in 2D superconductor-dielectric photonic crystal (2009) Laser Phys, 19, pp. 2035-2040
dc.relation.referencesBarvestani, J., Rezaei, E., Soltani Vala, A., Tunability of waveguide modes in two-dimensional photonic crystals based on superconducting materials (2013) Opt. Commun, 297, p. 74
dc.relation.referencesEl-Naggar, S.A., Elsayed, H.A., Aly, A.H., Maximization of Photonic Bandgaps in Two-Dimensional Superconductor Photonic Crystals (2014) J. Supercond. Nov. Magn, 27, p. 1615
dc.relation.referencesHashemi, R., Barvestani, J., Superconducting Point Defect in a Two-Dimensional Photonic Crystal (2014) J. Supercond. Nov. Magn, 27, p. 371
dc.relation.referencesLiu, W.-G., Pan, F.-M., Cai, L.-W., Photonic band gap of superconductor-medium structure: Two-dimensional triangular lattice (2014) Phys. C, 500, p. 4
dc.relation.referencesAly, A.H., Elsayed, H.A., El-Naggar, S.A., The properties of cutoff frequency in two-dimensional superconductor photonic crystals (2014) J. Mod. Opt, 61, p. 1064
dc.relation.referencesDiaz-Valencia, B.F., Calero, J.M., Photonic band gaps of a two-dimensional square lattice composed by superconducting hollow rods (2014) Phys. C, 505, p. 74
dc.relation.referencesZhang, H.F., Liu, S., The Tunable Omnidirectional Reflector Based on Two-Dimensional Photonic Crystals With Superconductor Constituents (2015) IEEE J. Sel. Top. Quantum Electron, 21
dc.relation.referencesDiaz-Valencia, B.F., Calero, J.M., Analysis of Photonic Band Gaps in a Two-Dimensional Triangular Lattice with Superconducting Hollow Rods (2017) J. Low Temp. Phys, 186, p. 275
dc.relation.referencesZhang, H.-F., The Mie resonance and dispersion properties in the two-dimensional superconductor photonic crystals with fractal structure (2018) Phys. C, 550, p. 65
dc.relation.referencesElsayed, H.A., Photonic band gaps properties of two-dimensional ternary superconductor photonic crystals (2019) Surf. Rev. Lett, 26, p. 1850152
dc.relation.referencesHao, J.J., Ju, L., Liu, Y.J., Du, W.-C., Gu, K.-D., Yang, H.-W., Research on Transmission Characteristics of Two-Dimensional Superconducting Photonic Crystal in THz-Waves (2020) Plasmonics, 15, p. 1083
dc.relation.referencesFan, S., Villeneuve, P.R., Joannopoulos, J.D., Large omnidirectional band gaps in metallodielectric photonic crystals (1996) Phys. Rev. B, 54, p. 11245. , 9984909
dc.relation.referencesHalevi, P., Ramos-Mendieta, F., Tunable Photonic Crystals with Semiconducting Constituents (2000) Phys. Rev. Lett, 85, p. 1875. , 10970636
dc.relation.referencesWang, Y., Coupled-resonator optical waveguides in photonic crystals with Archimedean-like tilings (2006) Europhys. Lett, 74, p. 261
dc.relation.referencesIliew, R., Etrich, C., Pertsch, T., Lederer, F., Slow-light enhanced collinear second-harmonic generation in two dimensional photonic crystals (2008) Phys. Rev. B, 77, p. 115124
dc.relation.referencesOlivier, S., Smith, C., Rattier, M., Benisty, H., Weisbuch, C., Krauss, T., Houdre, R., Oesterle, U., Miniband transmission in a photonic crystal coupled-resonator optical waveguide (2001) Opt. Lett, 26, p. 1019. , 18040520
dc.relation.referencesGómez-Urrea, H.A., Cardona, J.G., Caro-Lopera, F.J., Mora-Ramos, M.E., Photonic band gaps and waveguide slow-light propagation in Bravais–Moiré two-dimensional photonic crystals (2023) J. Opt, 25, p. 025101
dc.relation.referencesDavid, S., Chelnokov, A., Lourtioz, J., Wide angularly isotropic photonic bandgaps obtained from two-dimensional photonic crystals with Archimedean-like tilings (2000) Opt. Lett, 25, p. 1001
dc.relation.referencesUeda, K., Dotera, T., Gemma, T., Photonic band structure calculations of two- dimensional Archimedean tiling patterns (2007) Phys. Rev. B, 75, p. 195122
dc.relation.referencesJovanović, Đ., Gajić, R., Hingerl, K., Refraction and band isotropy in 2D square-like Archimedean photonic crystal lattices (2008) Opt. Express, 16, p. 4048
dc.relation.referencesBalci, S., Karabiyik, M., Kocabas, A., Kocabas, C., Aydinli, A., Coupled plasmonic cavities on Moiré surfaces (2010) Plasmonics, 5, p. 429
dc.relation.referencesBalci, S., Kocabas, A., Kocabas, C., Aydinli, A., Localization of surface plasmon polaritons in hexagonal arrays of Moiré cavities (2011) Appl. Phys. Lett, 98, p. 031101
dc.relation.referencesLubin, S.M., Hryn, A.J., Huntington, M.D., Engel, C.J., Odom, T.W., Quasiperiodic Moiré plasmonic crystals (2013) ACS Nano, 7, p. 11035. , 24228849
dc.relation.referencesGómez-Urrea, H.A., Bareño-Silva, J., Caro-Lopera, F.J., Mora-Ramos, M.E., The influence of shape and orientation of scatters on the photonic band gap in two-dimensional Bravais-Moiré lattices (2020) Photonics Nanostruct, 42, p. 100845
dc.relation.referencesGómez-Urrea, H.A., Ospina-Medina, M.C., Correa-Abad, J.D., Mora-Ramos, M.E., Caro-Lopera, F.J., Tunable band structure in 2D Bravais-Moiré photonic crystal lattices (2020) Opt. Commun, 459, p. 125081
dc.relation.referencesNasidi, I., Hao, R., Chen, J., Li, E., Jin, S., Photonic Moiré lattice waveguide with a large slow light bandwidth and delay-bandwidth product (2022) Appl. Opt, 61, p. 5776. , 36255812
dc.relation.referencesNasidi, I., Hao, R., Jin, S., Li, E., Flat bands and quasi-bound states in the continuum in a photonic Moiré lattice (2022) J. Opt. Soc. Am. B, 40, p. 260
dc.relation.referencesNasidi, I., Hao, R., Jin, S., Li, E., Inverse design of a photonic Moiré lattice waveguide towards improved slow light performances (2023) Appl. Opt, 62, p. 2651
dc.relation.referencesLou, B., Zhao, N., Minkov, M., Guo, C., Orenstein, M., Fan, S., Theory for Twisted Bilayer Photonic Crystal Slabs (2021) Phys. Rev. Lett, 126, p. 136101
dc.relation.referencesDong, K., Zhang, T., Li, J., Wang, Q., Yang, F., Rho, Y., Flat Bands in Magic-Angle Bilayer Photonic Crystals at Small Twists (2021) Phys. Rev. Lett, 126, p. 223601
dc.relation.referencesJohn SG, J., Joannopoulos, D., Winn, J.N., Meade, R.D., (2008) Photonic Crystals: Molding the Flow of Light, , 2nd ed., Princeton University of Press, Princeton, NJ, USA
dc.relation.references(2021) Multiphysics, v. 5.6, , COMSOL AB, Stockholm, Sweden
dc.relation.references(2012) Multiphysics Reference Guide, , COMSOL, Stockholm, Sweden
dc.relation.references(2012) Multiphysics Users Guide, , COMSOL, Stockholm, Sweden
dc.relation.referencesNorman, M.R., Chubukov, A.V., High-frequency behavior of the infrared conductivity of cuprates (2006) Phys. Rev. B, 73, p. 140501
dc.relation.referencesLee, W.M., Hui, P.M., Stroud, D., Propagating photonic modes below the gap in a superconducting composite (1995) Phys. Rev. B, 51, p. 8634. , 9977486
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem