Mostrar el registro sencillo del ítem

Una mirada al algoritmo BEPtoPNST

dc.contributor.authorJuan C. García-Ojeda
dc.date.accessioned2023-11-28T16:26:10Z
dc.date.available2023-11-28T16:26:10Z
dc.date.created2021-09-09
dc.identifier.issn1692-3324
dc.identifier.urihttp://hdl.handle.net/11407/8204
dc.descriptionThis work analyzes the computational complexity of algorithm BEPtoPNST which transforms a building-evacuation problem (BEP) into a time-expanded, process-network synthesis (PNST) problem. The solution of the latter is achieved by resorting to the P-graph method which exploits the combinatorial nature of a BEP. Unlike other approaches, the P-graph method provides not only the optimal solution (best evacuation route as a function of egress time), but also the best n sub-optimal solutions. For the complexity analysis, a generic processor, and a Random-access machine (RAM) model were deployed as well as a mathematical model to calculate the number and cost of the operations performed. It was observed that algorithm BEPtoPNST exhibits an asymptotic complexity of order O ( T | A | (| N | –k)). When solving a BEP, however, the total complexity grows exponentially with order O (T | A | (| N | –k)) + O (2h)) in the worst case; where h represents the total number of operating units specified in the corresponding PNST problem. Nevertheless, the computational complexity can be reduced significantly when the P-graph method is deployed.eng
dc.descriptionEl presente trabajo estudia y analiza la complejidad computacional, en el peor de los casos, del algoritmo BEPtoPNST. El objetivo de BEPtoPNST es transformar problemas de rutas de evacuación en edificios (Building- -Evacuation Problems, BEP) en problemas de síntesis de redes procesos de tiempo extendido (Time-Extended, Process-Network Synthesis, PNST), los cuales se solucionan por medio del método P-graph. La relevancia de analizar el algoritmo BEPtoPNST se sustenta en el hecho que el método P-graph explota la naturaleza combinatoria de un BEP luego de ser transformado en un PNST. El método P-graph no sólo provee la solución óptima (mejor ruta de evacuación en función del tiempo de egreso), sino que también provee las mejores n soluciones subóptimas; característica que a la fecha no ofrecen otros métodos de optimización. Para el análisis del algoritmo BEPtoNPST, se consideró un procesador genérico, el modelo Random-access machine, RAM, así como un modelo matemático para calcular el número de operaciones ejecutadas y sus costos, resultando en una complejidad asintótica de orden O ( T | A | (| N | –k)). Sin embargo, la complejidad total del proceso, incluyendo el método P-graph, crece de manera exponencial,es decir, O (T | A | (| N | –k)) + O (2N )), en el peor de los casos.spa
dc.formatPDF
dc.format.extentp. 115-128
dc.format.mediumElectrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad de Medellín
dc.relation.ispartofseriesRevista Ingenierías Universidad de Medellín; Vol. 20 No. 39 (2021)
dc.relation.haspartRevista Ingenierías Universidad de Medellín; Vol. 20 Núm. 39 julio-diciembre 2021
dc.relation.urihttps://revistas.udem.edu.co/index.php/ingenierias/article/view/3084
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0*
dc.sourceRevista Ingenierías Universidad de Medellín; Vol. 20 No. 39 (2021): (julio-diciembre); 115-128
dc.subjectBuilding-evacuation routeseng
dc.subjectProcess-network synthesiseng
dc.subjectRigorous structureseng
dc.subjectCombinatorial optimizationeng
dc.subjectP-grapheng
dc.subjectPseudocodeeng
dc.subjectRAM modeleng
dc.subjectAlgorithm complexityeng
dc.subjectAsymptotic notationeng
dc.subjectBig-Oeng
dc.subjectRutas de evacuación en edificiosspa
dc.subjectSíntesis de redes de procesosspa
dc.subjectEstructuras rigurosasspa
dc.subjectOptimización combinatoriaspa
dc.subjectP-graphspa
dc.subjectPseudocódigospa
dc.subjectModelo RAMspa
dc.subjectComplejidad de algoritmosspa
dc.subjectNotación asintóticaspa
dc.subjectO grandespa
dc.titleA Look at Algorithm BEPtoPNSTeng
dc.titleUna mirada al algoritmo BEPtoPNSTspa
dc.typearticle
dc.identifier.doihttps://doi.org/10.22395/rium.v20n39a7
dc.relation.citationvolume20
dc.relation.citationissue39
dc.relation.citationstartpage115
dc.relation.citationendpage128
dc.audienceComunidad Universidad de Medellín
dc.publisher.facultyFacultad de Ingenierías
dc.coverageLat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degreesLong: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.placeMedellín
dc.relation.referencesMinisterio de Ambiente, Vivienda, y Desarrollo Territorial, Reglamento Colombiano de Construcción Sismo Resistente – NSR10: Capítulo J – Requisito de Protección contra Incendios en Edificaciones. Colombia, 2010, pp. J1-J32.
dc.relation.referencesMinisterio de Ambiente, Vivienda, y Desarrollo Territorial, Reglamento Colombiano de Construcción Sismo Resistente – NSR10: Capítulo K – Requisitos Complementarios. Colombia, 2010, pp. K1-K64.
dc.relation.referencesLey 1523 de 2012. Congreso de la República de Colombia, Bogotá, Colombia, April 2012.
dc.relation.referencesDecreto 2157 de 2017. Departamento Administrativo de la Presidencia de la República. Bogotá, Diciembre de 2017.
dc.relation.referencesUnidad Nacional para la Gestión de Riesgos y Desastres – Colombia. Guía para la Elaboración de Planes de Evacuación (2da. Ed.), Status Publicidad, Bogotá, 2016, pp. 1-17.
dc.relation.referencesICONTEC. Norma Técnica Colombiana – NTC 1461, Instituto Colombiano de Normas Técnicas y Certificación, Bogotá, 1987, pp. 1-18.
dc.relation.referencesW.H. Stringfield, Emergency Planning and Management (2nd Edition). Lanham, MD: Government Institutes, 2000, pp. 1-294.
dc.relation.referencesH.W. Hamacher and S.A. Tjandra, “Mathematical modeling of evacuation problems: a state of the art,” in Pedestrian and Evacuation Dynamics, M. Schreckenberg and S.D. Sharma, eds., pp. 227–266, Berlin: Springer, 2002.
dc.relation.referencesM. Skutella, “An introduction to network flows over time,” in Research Trends in Combinatorial Optimization, W. Cook et al., eds., pp. 451–482, Berlin: Springer, 2009.
dc.relation.referencesS. Kim et al., “Contraflow transportation network reconfiguration for evacuation route planning,” IEEE Transactions on Knowledge and Data Engineering, vol. 20, n° 8, pp. 1115–1129, 2008. DOI: 10.1109/TKDE.2007.190722
dc.relation.referencesE.D. Kuligowski, and R.D. Peacock, A Review of Building Evacuation Models (1st ed.), National Institute of Standards and Technology, Technical Note 1471, 2005.
dc.relation.referencesE.D. Kuligowski et al., A Review of Building Evacuation Models (2nd ed.), National Institute of Standards and Technology, Technical Note 1680, 2010.
dc.relation.referencesJ.C. García-Ojeda. On Modeling Building-Evacuation-Route Planning and Organizationbased Multiagent Systems by Resorting to the P-graph Framework, PhD Dissertation, University of Pannonia, Veszprem, Hungary, 2016.
dc.relation.referencesG. Mishra et al., Improved Algorithms for the Evacuation Route Planning Problem. In: Lu Z., Kim D., Wu W., Li W., Du DZ. (eds) Combinatorial Optimization and Applications. Lecture Notes in Computer Science, vol. 9486. Springer, 2015.
dc.relation.referencesT.H. Cormen et al., Introduction to Algorithms, 3a ed., Cambridge: MA, MIT Press, 2009, pp. 1-1320.
dc.relation.referencesL. Han et al., “An Efficient Staged Evacuation Planning Algorithm Applied to Multi-Exit Buildings,” in Int. J. Geo-Inf., vol. 9, n° 46, 2020.
dc.relation.referencesX. Wang and H. Liu, “An evacuation algorithm for large buildings,” in Proceedings of the 10th World Congress on Intelligent Control and Automation, Beijing, 2012, pp. 2497-2502, DOI: 10.1109/WCICA.2012.6358293
dc.relation.referencesC.H. Oh et al., “An Efficient Building Evacuation Algorithm in Congested Networks,” in IEEE Access, vol. 7, pp. 169480-169494, 2019, DOI: 10.1109/ACCESS.2019.2955477
dc.relation.referencesJ. C. Garcia-Ojeda et al., “Modeling and Assessing Evacuation Route Plans by Resorting to the P-graph Framework,” 2020 Smart City Symposium Prague (SCSP), Prague, Czech Republic, 2020, pp. 1-6, DOI: 10.1109/SCSP49987.2020.9134050
dc.relation.referencesJ.C. Garcia-Ojeda et al., “Building-Evacuation-Route Planning via Time-Expanded Process-Network Synthesis,” Fire Safety Journal, vol. 61, pp. 338–347, 2013. DOI: 10.1016/j. firesaf.2013.09.023
dc.relation.referencesJ.C. Garcia-Ojeda et. al., “Planning evacuation routes with the P-graph framework,” Chemical Engineering Transactions, vol. 29, pp. 1531-1536, 2012. DOI: 10.3303/CET1229256
dc.relation.referencesJ.C. García-Ojeda et al., “Identifying Evacuation Routes via the P-graph Methodology,” presentedat the 10th Colombian Computation Congress, Bogotá, 2015.
dc.relation.referencesJ.C. García-Ojeda et al., “Multi-criteria Analysis of Building Evacuation Route Planning by Resorting to the P-graph Framework,” presented at 5th Veszprem Optimisation Conference: Advanced algorithms, Veszprem, 2012.
dc.relation.referencesJ.C. Garcia-Ojeda, “On Building Evacuation Route Planning by Resorting to P-graph,” Revista Colombiana de Computación, vol. 12, n° 1, pp. 111–125, 2011.
dc.relation.referencesF. Friedler et al., “Combinatorially Accelerated Branch-and-Bound Method for Solving the MIP Model of Process Network Synthesis,” in Global Optimization, Computational Methods and Applications, State of the Art, C.A. Floudasand P.M. Pardalos, eds., pp. 609-626, Dordrecht, Netherlands: Kluwer Academic Publishers, 1996.
dc.relation.referencesF. Friedler et. al., “Decision-mapping for design and synthesis of chemical processes: applications to reactor-network synthesis,” In Foundations of Computer-Aided Process Design, AIChE Symposium Series 91, L. T. Biegler and M. F. Doherty, eds. pp. 246 – 250, NY: American Institute of Chemical Engineers, 1995.
dc.relation.referencesF. Friedler et al., “Graph-theoretic approach to process synthesis: axioms and theorems,” Chemical Engineering Science, vol. 47, n° 8, pp. 1972–1988, 1992. DOI: 10.1016/0009-2509(92)80315-4
dc.relation.referencesF. Friedler et al., “Combinatorial Algorithms for Process Synthesis,” Computers & Chemical Engineering, vol. 16, n° 5, pp. S313–320, 1992. DOI: 10.1016/S0098-1354(09)80037-9
dc.relation.referencesF. Friedler et al., “Process Network Synthesis: Problem Definition.” Networks, vol. 28, n° 2, pp. 119–124, 1998. DOI: 10.1002/(SICI)1097-0037(199803)31:2<119::AID-NET6>3.0.CO;2-K
dc.relation.referencesJ.J. Klemeš and P.S., Varbanov, “Spreading the message: p-graph enhancements: implementations and applications”, Chemical Engineering Transactions, vol. 45, pp. 1333–1338, 2015, DOI: 10.3303/CET1545223
dc.relation.referencesV. Varga et al., “PNS solutions: a P-graph based programming framework for process network synthesis.” Chemical Engineering Transactions, vol. 21, pp. 1387-1392, 2010, DOI: 10.3303/CET1021232
dc.relation.referencesM. Minoux, “Networks synthesis and optimum network design problems: Models, solution methods and applications,” Networks, vol. 19, n° 3, pp. 313–360, 1989. DOI: 10.1002/net.3230190305
dc.relation.referencesL.R. Ford and D.R. Fulkerson, Flows in Networks. Princeton, NJ: Princeton University Press, 1962, pp. 1-210.
dc.relation.referencesA.M. Turing, “Rounding-off Errors in Matrix Processes,” The Quarterly Journal of Mechanics and Applied Mathematics, vol. 1, n° 1, pp. 287–308, 1948. DOI: 10.1093/qjmam/1.1.287
dc.relation.referencesR.R., Howell, Algorithms: A Top-Down Approach, 9a ed., Dept. of Computing and Information Sciences: KS, Kansas State University, 2009, pp. 1-617.
dc.relation.referencesD.E. Knuth, The Art of Computer Programming, Volume 1: Fundamental Algorithms, 3a ed., Redwood City: CA, Addison Wesley Longman Publishing Co., 1997, 672 pp.
dc.relation.referencesM.T. Goodrich and R. Tamassia, Algorithm Design and Applications, 1st ed., Hoboken: NJ, Wiley Publishing, 2014, pp. 1-816.
dc.relation.referencesA.V. Aho et al., The Design and Analysis of Computer Algorithms. Reading: MA, Addison Wesley, 1974, pp. 1-470.
dc.relation.referencesM.J. Barany (2015). Industrial Application of the P-graph Framework, PhD. Dissertation, University of Pannonia, Veeszprem, Hungary.
dc.relation.referencesB. Imreh, J. Fülöp, and F. Friedler, “A note on the equivalence of the set covering and process network synthesis problems”, Acta Cybernetica, 14(3), 2000, 497-502.
dc.relation.referencesR. Karp, Reducibility among combinatorial problems. In R. Miller & J. Thatcher (ed.), Complexity of Computer Computations, Plenum Press, 1972, pp. 85-103.
dc.relation.referencesL. Han et al., “FireGrid: an e-infrastructure for next-generation emergency response support”, Journal of Parallel and Distributed Computing 70(11) (2010) 1128–1141.
dc.relation.referencesK. Katayama et al., “Evacuation guidance support using cooperative agent-based IoT devices,” 2017 IEEE 6th Global Conference on Consumer Electronics (GCCE), Nagoya, 2017, pp. 1-2, DOI: 10.1109/GCCE.2017.8229431
dc.relation.referencesI.A. Zualkernan, et al., “An IoT-based Emergency Evacuation System,” 2019 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS), BALI, Indonesia, 2019, pp. 62-66, DOI: 10.1109/IoTaIS47347.2019.8980381
dc.relation.referencesK. Kozminski and E. Kinnen, “An Algorithm for Finding a Rectangular Dual of a Planar Graph for Use in Area Planning for VLSI Integrated Circuits,” 21st Design Automation Conference Proceedings, Albuquerque, NM, USA, 1984, pp. 655-656.
dc.relation.referencesA.Y. Lvov et al., “Integer Arithmetic Method for Wire Length Minimization in Global Placement with Convolution Based Density Penalty Computation,” U. S. Patent 10 528 695, Jan 30, 2020.
dc.relation.referencesS., Karimullahet al., Floorplanning for Placement of Modules in VLSI Physical Design Using Harmony Search Technique. In A. Kumar, M. Paprzycki, & V. Gunjan (ed.), ICDSMLA 2019. Lecture Notes in Electrical Engineering, vol 601, Springer, Singapore, 2020.
dc.relation.referencesT.-C. Chen and Y.-W. Chang, “Modern floorplanning based on B/sup
dc.relation.references/-tree and fast simulated annealing,” in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 4, pp. 637-650, April 2006, DOI: 10.1109/TCAD.2006.870076
dc.rights.creativecommonsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.identifier.eissn2248-4094
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.localArtículo científico
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International