Mostrar el registro sencillo del ítem

Morfología de carbonizados de mezclas bagazo-carbón: efecto del tamaño de partícula y concentración de bagazo

dc.contributor.authorGarcía-Saavedra, Edward Andrés
dc.contributor.authorTorres-Velasco, Alejandra
dc.contributor.authorMedina-Ramírez, Cristian Dubiany
dc.contributor.authorBarraza-Burgos, Juan Manuel
dc.contributor.authorGuerrero-Pérez, Juan Sebastián
dc.date.accessioned2023-11-28T18:29:29Z
dc.date.available2023-11-28T18:29:29Z
dc.date.created2021-12-17
dc.identifier.issn1692-3324
dc.identifier.urihttp://hdl.handle.net/11407/8211
dc.descriptionIn this work, the char morphology from coal-sugarcane bagasse with concentrations of 0, 25, 50, 75 and 100 % w/w and particle sizes -0.25 mm and -20 mm was evaluated. The samples were fed to a devolatilization process at 900 °C in a tubular drop reactor (-0.25 mm) and a batch-type fixed bed reactor (-20 mm). The morphology of the char was determined through image analysis. The surface area was evaluated by BET analysis for particle size -0.25 mm. The results showed that for particle sizes -20 mm synergistic effects were obtained towards the generation of reactive morphologies (thin walls + thick walls) with the increase in bagasse concentration. It was found that coal generated a higher concentration of thick and solid wall morphologies.eng
dc.descriptionEn este trabajo se evaluó la morfología de carbonizados provenientes de mezclas de bagazo de caña de azúcar y carbón con concentraciones de bagazo de 0, 25, 50, 75 y 100 % p/p y tamaños de partícula -0.25 mm y -20 mm. Las muestras se alimentaron a un proceso de desvolatilización a 900 °C en un reactor tubular de arrastre (-0.25 mm) y un reactor de lecho fijo tipo batch (-20 mm). La morfología de los carbonizados se determinó a través de análisis de imagen. El área superficial se evaluó por medio de análisis BET para tamaño de partícula -0.25 mm. Los resultados mostraron que para tamaños de partícula -20 mm se obtuvieron efectos sinergísticos hacia la generación de morfologías reactivas (paredes delgadas + paredes gruesas) con el aumento de la concentración de bagazo. Se encontró que el carbón generó mayor concentración de morfologías tipo pared gruesa y sólido.spa
dc.formatPDF
dc.format.extentp. 44-66
dc.format.mediumElectrónico
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad de Medellín
dc.relation.ispartofseriesRevista Ingenierías Universidad de Medellín; Vol. 21 No. 40 (2022)
dc.relation.haspartRevista Ingenierías Universidad de Medellín; Vol. 21 Núm. 40 enero-junio 2022
dc.relation.urihttps://revistas.udem.edu.co/index.php/ingenierias/article/view/2838
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0*
dc.sourceRevista Ingenierías Universidad de Medellín; Vol. 21 No. 40 (2022): (enero-junio); 44-66
dc.subjectCoaleng
dc.subjectBagasseeng
dc.subjectMorphological analysiseng
dc.subjectParticle sizeeng
dc.subjectSurface areaeng
dc.subjectDevolatilizationeng
dc.subjectSynergyeng
dc.subjectCarbónspa
dc.subjectBagazospa
dc.subjectAnálisis morfológicospa
dc.subjectTamaño de partículaspa
dc.subjectÁrea superficialspa
dc.subjectDesvolatilizaciónspa
dc.subjectSinergiaspa
dc.titleMorphology of chars of bagasse-coal mixtures: effect of particle size and concentration of bagasseeng
dc.titleMorfología de carbonizados de mezclas bagazo-carbón: efecto del tamaño de partícula y concentración de bagazospa
dc.typearticle
dc.identifier.doihttps://doi.org/10.22395/rium.v21n40a4
dc.relation.citationvolume21
dc.relation.citationissue40
dc.relation.citationstartpage44
dc.relation.citationendpage66
dc.audienceComunidad Universidad de Medellín
dc.publisher.facultyFacultad de Ingenierías
dc.coverageLat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degreesLong: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.placeMedellín
dc.relation.referencesInter nat ional Energy Agency ( IEA), 2018. ht t ps: //webs t ore. iea.org /co2-emissions-from-fuel-combustion-2018-overview
dc.relation.referencesE. Vakkilainen, Steam Generation from Biomass: Construction and Design of Large Boilers. 1° ed. Amsterdam, Países Bajos: Butterworth-Heinemann, 2017.
dc.relation.referencesUnidad de Planeación Minero Energética (UPME), Universidad Industrial de Santander, IDEAM, 2011. http://bdigital.upme.gov.co/handle/001/1058
dc.relation.referencesA. Campos, A. Carvajal, C. Chávez, “Cogeneración - Más Que Azúcar , Una Fuente de Energía Renovable Para El País”, Asocaña, Cali, Colombia, mayo de 2017.
dc.relation.referencesC. Wang, F. Wang, Q. Yang y R. Liang, “Thermogravimetric studies of the behavior of wheat straw with added coal during combustion”, Biomass and Bioenergy, vol. 33, no. 1, pp. 50–56, 2009.
dc.relation.referencesE. Biagini, F. Lippi, L. Petarca y L. Tognotti, “Devolatilization rate of biomasses and coalbiomass blends: An experimental investigation”, Fuel, vol. 81, no. 8, pp. 1041–1050, 2002.
dc.relation.referencesR. Bilbao, J. Mastral, M. Aldea y J. Ceamanos, “Kinetic study for the thermal decomposition of cellulose and pine sawdust in an air atmosphere”, Journal of Analytical and Applied Pyrolysis, vol. 39, no. 1, pp. 53–64, 1997.
dc.relation.referencesC. Avila, P. Cheng, T. Wu y E. Lester, “Morphology and Reactivity Characteristics of Char Biomass Particles”, Bioresource Technology-Elsevier, vol. 102, no. 8, pp. 5237–5243, 2011.
dc.relation.referencesC. Di-Blasi, “Combustion and Gasification Rates of Lignocellulosic Chars”, Progress in Energy and Combustion Science, vol. 35, no. 2, pp. 121–140, 2009.
dc.relation.referencesE. Fisher, C. Dupont, L. Darvell, J. Commandré, A. Saddawi, J. Jones, M. Grateau, T. Nocquet y S. Salvador, “Combustion and Gasification Characteristics of Chars from Raw and Torrefied Biomass”, Bioresource Technology, vol. 119, pp. 157–165, 2012.
dc.relation.referencesJ. Wang, S. Zhang, X. Guo, A. Dong, C. Chen, S. Xiong, Y. Fang y W. Yin, “Thermal Behaviors and Kinetics of Pingshuo Coal/Biomass Blends during Copyrolysis and Cocombustion”, Energy and Fuels, vol. 26, no. 12, pp. 7120–7126, 2012.
dc.relation.referencesC. Pang, E. Lester y T. Wu, “Influence of Lignocellulose and Plant Cell Walls on Biomass Char Morphology and Combustion Reactivity” Biomass and Bioenergy, vol. 119, pp. 480–491, 2018.
dc.relation.referencesCh. Guizani, M. Jeguirim, S. Valin, L. Limousy y S. Salvador, “Biomass Chars: The Effects of Pyrolysis Conditions on Their Morphology, Structure, Chemical Properties and Reactivity”, Energies, vol. 10, no. 6, pp. 796, 2017.
dc.relation.referencesZ. Wu, W. Yang y B. Yang, “Thermal Characteristics and Surface Morphology of Char during C o-Pyrolysis of L ow-Rank C oal Blended w ith M icroalgal Biomass: E ffects of Nannochloropsis and Chlorella”, Bioresource Technology, vol. 249, pp. 501-509, 2018.
dc.relation.referencesE. Lester, et al., “A Proposed Biomass Char Classification System”, Fuel Processing Technology, vol. 232, pp. 845-854, 2018.
dc.relation.referencesS. Krerkkaiwan, C. Fushimi, A. Tsutsumi y P. Kuchonthara, “Synergetic Effect during Co-Pyrolysis/Gasification of Biomass and Sub-Bituminous Coal”, Fuel Processing Technology, vol. 115, pp. 11–18, 2013.
dc.relation.referencesE. García, “Reactividad de carbones mezclados mediante caracterización morfológica de carbonizados”, tesis de maestría, Escuela de Ingeniería Química, Universidad del Valle, Cali, Colombia, 2013.
dc.relation.referencesC. Castro, V. Sanabria, “Morfología de carbonizados procedentes de mezclas carbón-bagazo de caña en un proceso de pirólisis”, tesis de pregrado, Escuela de Ingeniería Química, Universidad del Valle, Cali, Colombia, 2015.
dc.relation.referencesJ. Paredes, L. Sinisterra, “Morfología de carbonizados de mezclas carbón-bagazo obtenidos en atmósfera de N2 y CO2”, tesis de pregrado, Escuela de Ingeniería Química, Universidad del Valle, Cali, Colombia, 2017.
dc.relation.referencesE. Lester et al., “The Procedure Used to Develop a Coal Char Classification—Commission III Combustion Working Group of the International Committee for Coal and Organic Petrology”, International Journal of Coal Geology, vol. 81, no. 4, pp. 333–342, 2010.
dc.relation.referencesJ. Shen, S. Zhu, X. Liu, H. Zhang y J. Tan, “The prediction of elemental composition of biomass based on proximate analysis”, Energy Conversion and Management, vol. 51, no.5, pp. 983–987, 2010.
dc.relation.referencesM. Chan, J. Jones, M. Pourkashanian y A. Williams, “The Oxidative Reactivity of Coal Chars in Relation to Their Structure”, Fuel Processing Technology, vol. 78, no. 13, pp. 1539–1552, 1999.
dc.relation.referencesS. Daood, S. Munir, W. Nimmo y B. Gibbs, “Char Oxidation Study of Sugar Cane Bagasse, Cotton Stalk and Pakistani Coal under 1 % and 3 % Oxygen Concentrations”, Biomass and Bioenergy, vol. 34, no. 3, pp. 263–271, 2010.
dc.relation.referencesA. Rojas y J. Barraza, “Pulverized Coal Devolatilisation Prediction”, DYNA, Vol. 75, no. 154,pp. 113-122, 2008.
dc.relation.referencesS. Badzioch y P. Hawksley, “Kinetics of Thermal Decomposition of Pulverized Coal Particles”, Industrial and Engineering Chemistry Process Design and Development, vol. 9, no. 4, pp. 521–530, 1970.
dc.relation.referencesR. Barranco, M. Cloke y E. Lester, “The effect of operating conditions and coal type on char reactivity and morphology during combustion in a drop tube furnace”, in The Ninth Australian Coal Science Conference, Brisbane, Australia, 2001.
dc.relation.referencesJ. Gibbins, C. Man y K. Pendlebury, “Determination of rapid heating volatile matter contents as a routine test”, Combustion Science and Techonology, vol. 93, no. 1, pp. 349-361, 1993.
dc.relation.referencesE. Lester, “The Characterisation of Coals for Combustion”, Ph.D. disertación, dept. quím. ing., University of Nottingham, Nottingham, Inglaterra, 1994.
dc.relation.referencesM. Carvalho, F. Lockwood, W. Fiveland y C. Papadopoulos, “Combustion technologies for a clean environment”, Environmental Progress, vol. 16, no. 4, 2006.
dc.relation.referencesA. Vyas, T. Chellappa y J. Goldfarb, “Porosity Development and Reactivity Changes of Coal–biomass Blends during Co-Pyrolysis at Various Temperatures”, Journal of Analytical and Applied Pyrolysis, vol. 124, pp. 79–88, 2017.
dc.relation.referencesH. Haykiri y S. Yaman, “Interaction between biomass and different rank coals during copyrolysis”, Renewable Energy, vol. 35, no. 1, pp. 288–292, 2010.
dc.relation.referencesY. Kar, “Bioresource Technology Co-pyrolysis of walnut shell and tar sand in a fixed-bed reactor”, Bioresource Technology, vol. 102, no, 20, pp. 9800–9805, 2011.
dc.relation.referencesÖ. Onay, E. Bayram y Ö. Koçkar, «Copyrolysis of Seyitömer−Lignite and Safflower Seed: Influence of the Blending Ratio and Pyrolysis Temperature on Product Yields and Oil Characterization», Energy Fuels, vol. 21, no. 5, pp. 3049-3056, 2007.
dc.relation.referencesD. Park, S. Kim, H. Lee y J. Lee, “Bioresource Technology Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor”, Bioresource Technology, vol. 101, no. 15, pp. 6151–6156, 2010.
dc.relation.referencesD. Vamvuka y S. Sfakiotakis, “Combustion behaviour of biomass fuels and their blends with lignite”, Thermochimica Acta, vol. 526, no. 1–2, pp. 192–199, 2011.
dc.relation.referencesZ. Wu, S. Wang, J. Zhao, L. Chen y H. Meng, “Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal”, Bioresource Technology, vol. 169, pp. 220–228, 2014.
dc.relation.referencesH. Junhao et al., “Influence of volatiles-char interactions between coal and biomass on the volatiles released, resulting char structure and reactivity during co-pyrolysis”, Energy Conversion and Management, vol. 152, pp. 229-238, 2017.
dc.rights.creativecommonsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.identifier.eissn2248-4094
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.localArtículo científico
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International