Mostrar el registro sencillo del ítem

Propiedades de los materiales compuestos reforzados con fibras de guadua: un estudio comparativo

dc.contributor.authorSánchez Cruz, Martha Lissette
dc.contributor.authorCapote Rodríguez, Gil
dc.contributor.authorPatiño Quiazua, Juan Pablo
dc.date.accessioned2023-11-28T18:34:05Z
dc.date.available2023-11-28T18:34:05Z
dc.date.created2022-09-06
dc.identifier.issn1692-3324
dc.identifier.urihttp://hdl.handle.net/11407/8220
dc.descriptionA numerical model for predicting the effect of the modification of a fiber´s surface on the mechanical properties of biocomposite panels made with bamboo fibers and vegetable resin was elaborated. For the study, the three surface treatments methods were mercerization, plasma, and ozone treatment. To analyze the influence of each treatment on the surface of the fibers, a study of their morphology, chemical composition, and crystallinity was carried out using scanning electron microscopy, X-ray energy dispersion spectroscopy, and X-ray diffraction. A characterization of the physical properties of the fibers was carried out by determining the density and the absorption capacity. The influence of the treatment on the mechanical properties of the fibers was analyzed by determining their tensile strength. These results were used to determine the elastic properties of the plies that make up the biocomposite, applying the modified mixing rule for anisotropic materials. The numerical models were elaborated using a commercial finite element program, considering a linear analysis. The composite was conceived as a laminate made up of layers of fibers oriented in different directions. To validate the numerical results, panels were made using fibers treated according to established treatment methods and a vegetable resin. For the construction of the panels, a compression system at standard room temperature was used. The fibers were placed in six 1.13 mm-thick layers, reproducing the conditions established in the numerical model. The determination of the physical properties of the composite was based on the determination of the density, the absorption capacity, and the percentage of swelling. The determination of the mechanical properties focused on obtaining the maximum strength for tensile, compression, and static bending. The results show that it is possible to improve the mechanical performance of the composite when the surface of the fibers that act as reinforcement is modified. According to the results, panels made with fibers treated with plasma and with ozone exhibited better mechanical performance, showing a good correlation between the results of the numerical models and the values obtained experimentally.eng
dc.descriptionSe elaboró un modelo numérico para predecir el efecto de la modificación de la superficie de una fibra sobre las propiedades mecánicas de los paneles de biocompuestos fabricados con fibras de bambú y resina vegetal. Para el estudio, los tres métodos de tratamiento superficial fueron la mercerización, el plasma y el tratamiento con ozono. Para analizar la influencia de cada tratamiento en la superficie de las fibras, se realizó un estudio de su morfología, composición química y cristalinidad mediante microscopía electrónica de barrido, espectroscopia de dispersión de energía de rayos X y difracción de rayos X. Se llevó a cabo una caracterización de las propiedades físicas de las fibras mediante la determinación de la densidad y la capacidad de absorción. La influencia del tratamiento en las propiedades mecánicas de las fibras se analizó determinando su resistencia a la tracción. Estos resultados se utilizaron para determinar las propiedades elásticas de las capas que componen el biocompuesto, aplicando la regla de la mezcla modificada para materiales anisótropos. Los modelos numéricos se elaboraron utilizando un programa comercial de elementos finitos, considerando un análisis lineal. El compuesto se concibió como un laminado formado por capas de fibras orientadas en diferentes direcciones. Para validar los resultados numéricos, se fabricaron paneles utilizando fibras tratadas según los métodos de tratamiento establecidos y una resina vegetal. Para la construcción de los paneles se utilizó un sistema de compresión a temperatura ambiente estándar. Las fibras se colocaron en seis capas de 1,13 mm de espesor, reproduciendo las condiciones establecidas en el modelo numérico. La determinación de las propiedades físicas del compuesto se basó en la determinación de la densidad, la capacidad de absorción y el porcentaje de hinchamiento. La determinación de las propiedades mecánicas se centró en la obtención de la resistencia máxima a tracción, compresión y flexión estática. Los resultados muestran que es posible mejorar las prestaciones mecánicas del compuesto cuando se modifica la superficie de las fibras que actúan como refuerzo. De acuerdo con los resultados, los paneles fabricados con fibras tratadas con plasma y con ozono presentaron mejores prestaciones mecánicas, mostrando una buena correlación entre los resultados de los modelos numéricos y los valores obtenidos experimentalmente.spa
dc.formatPDF
dc.format.extentp. 1-18
dc.format.mediumElectrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad de Medellín
dc.relation.ispartofseriesRevista Ingenierías Universidad de Medellín; Vol. 21 No. 40 (2022)
dc.relation.haspartRevista Ingenierías Universidad de Medellín; Vol. 21 Núm. 41 julio-diciembre 2022
dc.relation.urihttps://revistas.udem.edu.co/index.php/ingenierias/article/view/4001
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0*
dc.sourceRevista Ingenierías Universidad de Medellín; Vol. 21 No. 41 (2022): (julio-diciembre); 1-18
dc.subjectCompositeseng
dc.subjectPropertieseng
dc.subjectTensileeng
dc.subjectCompressioneng
dc.subjectBendingeng
dc.subjectNumerical modeleng
dc.subjectSuperficial treatmentseng
dc.subjectPlasmaeng
dc.subjectMercerizationeng
dc.subjectOzoneeng
dc.subjectCompuestosspa
dc.subjectPropiedadesspa
dc.subjectTracciónspa
dc.subjectCompresiónspa
dc.subjectFlexiónspa
dc.subjectModelo numéricospa
dc.subjectTratamientos superficialesspa
dc.subjectPlasmaspa
dc.subjectMercerizaciónspa
dc.subjectOzonospa
dc.titleProperties of Composite Materials Reinforced with Guadua Fibers: a Comparative Studyeng
dc.titlePropiedades de los materiales compuestos reforzados con fibras de guadua: un estudio comparativospa
dc.typearticle
dc.identifier.doihttps://doi.org/10.22395/rium.v21n41a4
dc.relation.citationvolume21
dc.relation.citationissue41
dc.relation.citationstartpage1
dc.relation.citationendpage18
dc.audienceComunidad Universidad de Medellín
dc.publisher.facultyFacultad de Ingenierías
dc.coverageLat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degreesLong: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.placeMedellín
dc.relation.referencesM. Ramesh, K. Palanikumar, and K. Reddy, “Mechanical property evaluation of sisal– jute glass fibre reinforced polyester composites”, Compos. B. Eng. (vol 48), (pp. 1–9), May 2013, https://doi.org/10.1016/j.compositesb.2012.12.004.
dc.relation.referencesD. Ray, S. Sengupta, A.K. Mohanty, and M. Misra, “A study of the mechanical and fracture behaviour of jute–fabric–reinforced clay-modified thermoplastic starch-matrix composites”, Macromol. Mater Eng., (vol. 292), (pp. 1075–1084), October 2007, https://doi.org/10.1002/mame.200700111.
dc.relation.referencesK.G. Satyanarayana, J.l. Guimaraes, and F. Wypych, “Studies on lignocellulosic fibers of Brazil. Part I: Source, production, morphology, properties and applications”,Compos. Part A Appl. Sci, (vol. 38)
dc.relation.referencesM.R. Sanyay, S. Siengchin, J. Parameswarampillai, M. Jawaid, C.I. Prumcu, and A. Khan, “A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization”, Carbohydr. Polym. (vol. 207), (pp. 108-121), November 2018. https://doi.org/10.1016/j.carbpol.2018.11.083.
dc.relation.referencesS. Leduc, J.R.G. Urena, R. Gonzalez-Nunez, J.R. Quirarte, B. Riedl, and D. Rodriguez, “LDPE/ Agave fibre composites: effect of coupling agent and weld line on mechanical and morphological properties”, Polym. Polym. Compos., (vol. 16), (pp. 115–24), October 2007, https://doi.org/10.1177/096739110801600204.
dc.relation.referencesJ. Moran, A. Vera, V. Alvaraz, P. Cyras, and A. Vasquez, “Extraction of cellulose and preparation of nanocellulose from sisal fibers”, Cellulose, (vol. 15), (pp. 149–159), August 2007. https://doi.org/10.1007/s10570-007-9145-9.
dc.relation.referencesP. Bhijit, M. Deshpande, R. Bhaskar, and R. Lakshmana, “Extraction of bamboo fibers and their use as reinforcement in polymeric composites”, J. Appl. Polym. Sci. (vol. 76), (pp. 83–92), February 2000. https://doi.org/10.1002/(SICI)1097-4628(20000404)76:1<83::AID-APP11>3.0.CO;2-L
dc.relation.referencesFerreira L., Evangelista, M.B., Martins, M.C.L., Granja, P.L., Esteves, J.L., and Barbosa, M.A., “Improving the adhesion of poly(ethylene terephthalate) fibers to poly(hydroxyethyl methacrylate) hydrogels by ozone treatment: Surface characterization and pull-out tests”, Polym. J. (vol. 46), (pp. 9840–9850), November 2005. https://doi.org/10.1016/j.polymer.2005.08.033.
dc.relation.referencesN. Prem. Kumar, M. Chellapandian, N. Arunachelam, and P. Vincent, “Effect of mercerization on the chemical characteristics of plant-based natural fibers”, Mater. Today: Proc., (pp. 1-7), May 2022. https://doi.org/10.1016/j.matpr.2022.05.319.
dc.relation.referencesX. Du, S. Wu, T. Li, Y. Yin, and J. Zhou, “Ozone oxidation pretreatment of softwood Kraft lignin: An effective and environmentally friendly approach to enhance fast pyrolysis producto selectivity”, Fuel Process. Technol. (vol. 231), (no. 15), (pp. 107232-1-107232-9) https://doi.org/10.1016/j.fuproc.2022.107232.[11] P.S. Sari, S. Thomas, P. Spatenka, and Z. Ghanam, “Effect of plasma modification of polyethylene on natural fibre composites prepared via rotational moulding”, Compos. B. eng, (vol. 177), (pp. 107344), July 2019. https://doi.org/10.1016/j.compositesb.2019.107344.
dc.relation.referencesM. L. Sánchez, G. Capote, and J. P. Patiño, “Effect of surface treatment of fibers on the accelerated aging of biocomposites”, Constr. Build. Mater. (vol. 271), (pp. 121875-1-121875-14), February 2021. https://doi.org/10.1016/j.conbuildmat.2020.121875
dc.relation.referencesMartha L. Sánchez, W. Patino, and J. Cardenas, “Physical-mechanical properties of bamboo fibers-reinforced biocomposites: Influence of surface treatment of fibers”, J. Build. Eng., (vol. 28), (pp. 101058-1-101058-9), March 2020. https://doi.org/10.1016/j.jobe.2019.101058.
dc.relation.referencesASTM Standard D8171, 2018, “Standard Test Methods for Density Determination of Flax Fiber”, ASTM International, West Conshohocken, PA, 2018, DOI:10.1520/D8171-18, www.astm.org.
dc.relation.referencesASTM Standard D1554, 2016. “Standard Terminology Relating to Wood-Base Fiber and Particle Panel Materials”, ASTM International, West Conshohocken, PA, 2016, Doi: 10.1520/D1554-10R16, www.astm.org.
dc.relation.referencesP. Hine, B. Parveen, D. Brands, and F. Caton-Rose, “Validation of the modified rule of mixtures using a combination of fibre orientation and fibre length measurements”, Compos.- A: Appl. Sci. Manuf., (vol. 64), (pp. 70-78), September 2014. https://doi.org/10.1016/j.compositesa.2014.04.017.
dc.relation.referencesASTM Standard D4442, 2014, “Standard Test Method for Direct Moisture Content Measurement of Wood and Wood-Based Materials”, ASTM International, West Conshohocken, PA, 2016, Doi: 10.1520/D4442-14, www.astm.org.
dc.relation.referencesASTM Standard D1037, 2012, “Standard Test Methods for Evaluating Properties of Wood-Base Fiber and Particle Panel Materials”, ASTM International, West Conshohocken, PA, 2016, Doi: 10.1520/D1037-12, www.astm.org.
dc.relation.referencesM. Cai, H Takagi, A.N. Nakagaito, T. Katoh, G. Ueki, Y. Waterhouse, and Y. Li, “Influence of alkali treatment on internal microstructure and tensile properties of abaca fibers”, Ind Crops Prod., (vol. 65), (pp. 27–35), March 2015. https://doi.org/10.1016/j.indcrop.2014.11.048.
dc.relation.referencesL. Minatia, C. Migliaresi, L. Lunelli, G. Viero, D.S. Serra, and G. Speranza, “Plasma assisted surface treatments of biomaterials”, Biophys. Chem. , (vol. 229), (pp. 151–164), October 2017. https://doi.org/10.1016/j.bpc.2017.07.003.
dc.relation.referencesK.M. Praveen, S. Thomas, Y. Grohens, M. Mozetic, I. Junkar, G. Primc, and M. Gorjanc, “Investigations of plasma induced effects on the surface properties of lignocellulosic natural coir fibres”, Appl. Surf. Sci., (vol. 368), (pp. 146–15), April 2016. https://doi.org/10.1016/j.apsusc.2016.01.159.
dc.relation.referencesP. Ahvenainen, I. Kontro, and K. Svedstrom, “Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I”, Cellullose, (vol. 23), (pp.1073–1086), April 2016. https://doi.org/10.1007/s10570-016-0881-6.
dc.relation.referencesA.I.S. Brigida, V.M.A. Calado, L.R.B. Gonçalvezs, and M.A.Z. Coelho, “Effect of chemical treatments on properties of green coconut fiber”, Carbohydr. Polym., (vol. 79), (pp. 832–838), March 2010. https://doi.org/10.1016/j.carbpol.2009.10.005.
dc.rights.creativecommonsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.identifier.eissn2248-4094
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.localArtículo científico
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International