REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Land cover mapping of a tropical region by integrating multi-year data into an annual time series

Thumbnail
Share this
Date
2015
Author
Anaya J.A.
Colditz R.R.
Valencia G.M.
TY - GEN T1 - Land cover mapping of a tropical region by integrating multi-year data into an annual time series AU - Anaya J.A. AU - Colditz R.R. AU - Valencia G.M. Y1 - 2015 UR - http://hdl.handle.net/11407/2867 PB - MDPI AG AB - ER - @misc{11407_2867, author = {Anaya J.A. and Colditz R.R. and Valencia G.M.}, title = {Land cover mapping of a tropical region by integrating multi-year data into an annual time series}, year = {2015}, abstract = {}, url = {http://hdl.handle.net/11407/2867} }RT Generic T1 Land cover mapping of a tropical region by integrating multi-year data into an annual time series A1 Anaya J.A. A1 Colditz R.R. A1 Valencia G.M. YR 2015 LK http://hdl.handle.net/11407/2867 PB MDPI AG AB OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
Generating annual land cover maps in the tropics based on optical data is challenging because of the large amount of invalid observations resulting from the presence of clouds and haze or high moisture content in the atmosphere. This study proposes a strategy to build an annual time series from multi-year data to fill data gaps. The approach was tested using the Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation index and spectral bands as input for land cover classification of Colombia. In a second step, selected ancillary variables, such as elevation, L-band Radar, and precipitation were added to improve overall accuracy. Decision-tree classification was used for assigning eleven land cover classes using the International Geosphere-Biosphere Programme (IGBP) legend. Maps were assessed by their spatial confidence derived from the decision tree approach and conventional accuracy measures using reference data and statistics based on the error matrix. The multi-year data integration approach drastically decreased the area covered by invalid pixels. Overall accuracy of land cover maps significantly increased from 58.36% using only optical time series of 2011 filtered for low quality observations, to 68.79% when using data for 2011 ± 2 years. Adding elevation to the feature set resulted in 70.50% accuracy.
URI
http://hdl.handle.net/11407/2867
Collections
  • Indexados Scopus [1069]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMSee Statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 340 5555 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com