Mostrar el registro sencillo del ítem

dc.creatorCaro-Lopera F.J.spa
dc.date.accessioned2017-05-12T16:05:59Z
dc.date.available2017-05-12T16:05:59Z
dc.date.created2016
dc.identifier.issn9720871
dc.identifier.urihttp://hdl.handle.net/11407/3156
dc.description.abstractIn this paper, we solve an open problem proposed by Davis in [3] about the construction of the invariant polynomials by using the Laplace-Beltrami operator. Until now, only a basis for the non-normalized polynomials is known, and the coefficients need to be collected in τ × τ array of integers. The required solution demanded the construction of a new basis, in certain subspace, which can be written in a triangular array of ρ (ρ + 1) 2 non-negative integers (ρ ≤ τ), the method also provides some useful checking rules for the correctness of the tables. However, a counterexample for a recursion method is provided, going against the old conjecture that Davis’ polynomials can be computed recurrently as James’ zonal polynomials (James [7]). Given that the method is defined for the eigenvalues of the implied positive definite matrices, the idea of the paper holds naturally for invariant polynomials under real normed division algebras (real, complex, quaternions and octonions). © 2016 Pushpa Publishing House, Allahabad, India.eng
dc.language.isoeng
dc.publisherPushpa Publishing Housespa
dc.relation.isversionofhttp://www.pphmj.com/abstract/10180.htmspa
dc.sourceScopusspa
dc.subjectInvariant polynomialsspa
dc.subjectLaplace-beltrami operatorspa
dc.subjectZonal polynomialsspa
dc.titleThe impossibility of a recurrence construction of the invariant polynomials by using the laplace-beltrami operatorspa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.contributor.affiliationCaro-Lopera, F.J., Department of Basic Sciences, University of Medellin, Medellin, Colombiaspa
dc.identifier.doi10.17654/MS100081265
dc.relation.ispartofesFar East Journal of Mathematical Sciencesspa
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem