Mostrar el registro sencillo del ítem

dc.creatorMontoya Ramírez, Rubén Daríospa
dc.creatorOsorio Arias, Andres Fernandospa
dc.creatorOrtiz Royero, Juan Carlosspa
dc.creatorOcampo-Torres, Francisco Javierspa
dc.date.accessioned2017-06-15T21:49:41Z
dc.date.available2017-06-15T21:49:41Z
dc.date.created2013
dc.identifier.citationMontoya, R. D., Arias, A. O., Royero, J. O., & Ocampo-Torres, F. J. (2013). A wave parameters and directional spectrum analysis for extreme winds. Ocean Engineering, 67, 100-118.spa
dc.identifier.issn00298018
dc.identifier.urihttp://hdl.handle.net/11407/3353
dc.descriptionIn this research a comparison between two of the most popular ocean wave models, WAVEWATCH III™ and SWAN, was performed using data from hurricane Katrina in the Gulf of Mexico. The numerical simulation of sea surface directional wave spectrum and other wave parameters for several parameter- izations and its relation with the drag coefficient was carried out. The simulated data were compared with in-situ NOAA buoy data. For most of the buoys, WAVEWATCH III™ presented the best statistical comparisons for the main wave parameters, such as significant wave height and peak period. The SWAN model tends to overestimate the maximum values for significant wave height for some buoys and the peak period for almost all the buoys. Both models tend to overestimate the value of peak direction, presenting an area of greater energy to the south. The WAVEWATCH III™ model performs best for buoys located in right forward quadrant, which generally has higher winds and waves. This indicates a better spatial representation of wave parameters in the higher energy areas for the WAVEWATCH III™ model. Results based on the quadrant location for most of the analyzed cases, are in agreement with the results from other sources such as the Scanning Radar Altimeter (SRA).spa
dc.language.isoeng
dc.publisherElsevierspa
dc.relation.isversionofhttp://www.sciencedirect.com/science/article/pii/S0029801813001637spa
dc.sourceOcean Engineeringspa
dc.subjectWind speedspa
dc.subjectDirectional spectrumspa
dc.subjectGulf of Mexicospa
dc.subjectMoored buoysspa
dc.subjectHurricane wavesspa
dc.titleA wave parameters and directional spectrum analysis for extreme windsspa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.publisher.programIngeniería Civilspa
dc.identifier.doihttps://doi.org/10.1016/j.oceaneng.2013.04.016
dc.publisher.facultyFacultad de Ingenieríasspa
dc.creator.affiliationMontoya Ramírez, Rubén Darío; Universidad de Medellínspa
dc.creator.affiliationOsorio Arias, Andres Fernando; Universidad Nacional de Colombia Sede Medellínspa
dc.creator.affiliationOrtiz Royero, Juan Carlos; Universidad del Nortespa
dc.creator.affiliationOcampo-Torres, Francisco Javier; Centro de Investigación Científica y de Educación Superior de Ensenadaspa
dc.relation.ispartofesOcean Engineering Volume 67, 15 July 2013, Pages 100–118spa
dc.relation.referencesArdhuin, F., Magne, R., 2007. Current efects on scattering of surface gravity waves by bottom topography. J. Fluid Mech 576, 235–264.spa
dc.relation.referencesArdhuin, F., Chapron, B., Collard, F., 2008. Ocean swell evolution from distant storms. Nat. Geoscience.spa
dc.relation.referencesBarber, N.F., Ursell, F., 1948. The generation and propagation of ocean waves and swell. Philos. Trans. Roy. Soc. London 240A, 527–560.spa
dc.relation.referencesBidlot, J.R., Abdalla, S., Janssen, P.A.E.M., 2005. A Revised Formulation for Ocean Wave Dissipation in CY25R1. Tech. Rep. Memorandum R60.9/JB/0516, Research Department, ECMWF, Reading, UK.spa
dc.relation.referencesBolaños-Sanchez, R., Sanchez-Arcilla, A., Cateura, J., 2007. Evaluation of two atmo- spheric models for wind-wave modelling in the NW Mediterranean. J. Mar. Syst. 65, 336–353.spa
dc.relation.referencesBooij, N., Holthuijsen, L.H., Ris, R.C., 1996. The “SWAN” wave model for shallow water. Coastal Eng 1, 668–672.spa
dc.relation.referencesBooij, N., Ris, R.C., Holthuijsen, L.H., 1999. A third-generation wave model for coastal regions. Part I. Model description and validation. J. Geophys. Res. 104 (C4), 7649–7666.spa
dc.relation.referencesBooij, N., 2004. SWAN Cycle III version 40.41 user manual. Available from: ⟨http://fluidmechanics.tudelft.nl/swan/index.htm⟩.spa
dc.relation.referencesCardone, V.J., Cox, A.T., Greenwood, J.A., Thompson, E.F., 1994. Upgrade of Tropical Cyclone Surface Wind Field Model Misc. Paper CERC-94-14, US Army Corps of Engineers.spa
dc.relation.referencesCavaleri, L., Sclavo, M., 2006. The calibration of wind and wave model data in the Mediterranean Sea. Coast. Eng. 53, 613–627.spa
dc.relation.referencesChao, Y.Y., Tolman, H.L., 2001. Specification of hurricane wind fields for ocean wave prediction. In: Edge, B.L., Hemsley, J.M. (Eds.), Ocean Wave Meas. Anal. ASCE, pp. 671–679.spa
dc.relation.referencesChung-chu teng, Bouchard, R., Riley, R., Mettlach, T., Dinoso, R., Chaffin, J., 2009. NDBC's Digital Directional Wave Module. OCEANS, 2009, MTS/IEEE Biloxi- Maryne Technology for Our Future: Global and local changes.spa
dc.relation.referencesCollins, J.J., Viehnaman. J., 1971. A Simplified Empirical Model for Hurricane Wind Fields. Paper no. otc 1346. Offshore Technology Conference.spa
dc.relation.referencesEarle, M.D., 1996. Nondirectional and Directional Wave Data Analysis Procedures. NDBC technical Document, 96-01. National Data Buoy Center, Stennis Space Center, MS.spa
dc.relation.referencesEarle, M.D., Steele, K.E., Wang, D.W.C., 1999. Use of Advanced Directional Wave Spectra Analysis Methods. Ocean Eng. 26, 1421–1434.spa
dc.relation.referencesECMWF, 2009. IFS Documentation Cy33rl, European Centre for Medium- Range Weather ForecastsECMWF,www.ecmwf.int/research/ifsdocs/CY33rl/ DYNAMICS/⟩.spa
dc.relation.referencesGuillaume, D., Xavier Bertin, X., Taborda., R., 2010. Wave climate variability in the North-East Atlantic Ocean over the last six decades. Ocean Modell. 31, 120–131.spa
dc.relation.referencesGunther, H., Hasselmann, S., Janssen, P.A.E.M., 1992. The WAM model Cycle 4 (revised version), Deutsch. Klim. Rechenzentrum, Techn. Report no. 4, Ham- burg, Germany.spa
dc.relation.referencesHasselmann, K., Barnett, T.P., Bouws, E., Carlson, H., Cartwright, D.E., Enke, K., Ewing, J.A., Gienapp, H., Hasselmann, D.E., Kruseman, P., Meerburg, A., Mueller, P., Olbers, D.J., Richter, K., Sell, W., Walden, H., 1973. Measurements of wind- wave growth and swell decay during the Joint North SeaWave Project (JONSWAP). Ergaenzungsheft zur Deutschen Hydrographischen Zeitschrift, Reihe A 8 (12), 95.spa
dc.relation.referencesHasselmann, S., Hasselmann, K., Allender, J.H., Barnett, T.P., 1985. Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part II: Parameterizations of the nonlinear energy transfer for application in wave models. J. Phys. Oceanogr 15, 1378–1391.spa
dc.relation.referencesHolland, G.J., 1980. An analytical model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev 108, 1212–1218.spa
dc.relation.referencesHolthuijsen, L.H., Booij, H.N., 2003. Phase-decoupled refraction-diffraction for spectral wave models. Coast. Eng 49, 291–305.spa
dc.relation.referencesIsobe, M., Kondo, K., Horikawa, K., 1984. Extension of MLM for estimating directional wave spectrum. In: Proceedings of the Symposium on Description and Modeling of Directional Seas, Lyngby, Denmark, Danish Hydraulic Institute, A-6-1–A-6-15.spa
dc.relation.referencesJanssen, P.A.E.M., 1989. Wind-induced stress and the drag of air-flow over sea waves. J. Phys. Oceanogr. 19, 745–754.spa
dc.relation.referencesJanssen, P.A.E.M., 1991a. Quasi-linear theory of of wind wave generation applied to wave forecasting. J. Phys. Oceanogr. 21, 1631–1642.spa
dc.relation.referencesJanssen, P.A.E.M., 1991b. Consequences of the effect of surface gravity waves on the mean air flow. In: International Union of Theoretical and Applied Mechanics (IUTAM), Sydney, Australia, 193–198.spa
dc.relation.referencesJelesnianski, C.P., 1974. Special Program to List Amplitudes of Surges from Hurricanes (SPLASH); Part II: General tracks and variant storm conditions. NOAA, Tech, Memo. NWS TDL-52, Silver Spring.spa
dc.relation.referencesKhama, K., Hauser, D., Krogstad, H.E., Lenher, S., Monbaliu, J., Wyatt. 2003. Measuring and Analysing the Directional Wave Spectrum of Ocean Waves. COST 714 Working Group 3.spa
dc.relation.referencesKomen, G.J., Hasselmann, S., Hasselmann, K., 1984. On the existence of a fully developed wind-sea spectrum. J. Phys. Oceanogr. 14, 1271–1285.spa
dc.relation.referencesKomen, G.J.L., Donelan, M., Hasselmann, K., Hasselmann, S., Janssen, P.E.A.M., 1994. Dynamics and Modelling of Ocean Waves. Cambridge University Press, United Kingdom 532.spa
dc.relation.referencesKreisel, G., 1949. Surface waves. Quart. Journ. Appl. Math, 21–44.spa
dc.relation.referencesKudryavtsev, V.N., Makin, V.K, 2011. Impact of ocean spray on the dynamics of the marine atmospheric boundary layer. Bound.-Layer Meteorol 140-3, 383–410.spa
dc.relation.referencesLadd, C., Bond, N.A., 2002. Evaluation of the NCEP/NCAR reanalysis in the NE Pacific and the Bearing Sea. J. Geophys. Res. 107, C103158, http://dx.doi.org/10.1029/ 2001JCOO1157.spa
dc.relation.referencesLizano, O.G., 1990. Wind model adjusted to a wave generation model for forecasting hurricanes. Geophysics 33, 75–103.spa
dc.relation.referencesLiu, H., Xie, L., Pietrafesa, L.J., Bao, S., 2007. Sensitivity of wind waves to hurricane wind characteristics. Ocean Modell. 18, 37–52.spa
dc.relation.referencesLonguet-Higgins, M.S., Cartwright, D.E., Smith, N.D., 1963. Observations of the directional spectrum of sea waves using the motions of a floating buoy. Ocean Wave Spectra. Prentice-Hall, Englewood Cliffs, NJ, pp. 111–136.spa
dc.relation.referencesMassel, S.R., 1996. Ocean surface waves: their physics and prediction. Adv. Ocean Eng. World Scientific 11, 494.spa
dc.relation.referencesMakin, V.K., 2005. A note on the drag of the sea surface at hurricane winds. Boun. - Layer Meteorol. 115, 169–176.spa
dc.relation.referencesMesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P., Ebisuzaki, W., Jovic, D., Woollen, J., Rogers, E., Berbery E.H., Ek, M.B., Fan, Y., Grumbine, R., Higgins, W., Li, H., Lin, Y., Manikin, G., Parrish, D., Shi, W., 2006. North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343–360.spa
dc.relation.referencesMiles, J.W., 1957. On the generation of surface waves by shear flows. J. Fluid Mech 3 (2), 185–204.spa
dc.relation.referencesMoon, I.J., Ginis, I., Hara, T., Tolman, H.L., Wright, C.W., Walsh, E.J., 2003. Numerical simulation of sea surface directional wave spectra under hurricane wind forcing. J. Phys. Ocean 33, 1680–1760.spa
dc.relation.referencesMitsuyasu, H., 1968a. A note on the nonlinear energy transfer in the spectrum of windgenerated waves. Rept. Res. Inst. Appl. Mech., Kyushu Univ 16, 251264.spa
dc.relation.referencesMitsuyasu, H, 1969. On the growth of the spectrum of windgenerated waves, II. Rept. Res. Inst. Appl. Mech., Kyushu Unit 17, 235–243.spa
dc.relation.referencesMoon, I.-J., Hara, T., Ginis, I., Belcher, S.E., Tolman, H., 2004a. Effect of surface waves on air–sea momentum exchange. Part I: Effect of mature and growing seas. J. Atmos. Sci. 61, 2321–2333.spa
dc.relation.referencesMoon, I.-J., Ginis, I., Hara, T., 2004b. Effect of surface waves on air–sea momentum exchange. Part II: Behavior of drag coefficient under tropical cyclones. J. Atmos. Sci. 61, 2334–2348.spa
dc.relation.referencesMoon, I.-J., Ginis, I., Hara, T., 2004c. Effect of surface waves on Charnock coefficient under tropical cyclones. Geophys. Res. Lett. 31, L20302.spa
dc.relation.referencesMontoya, R.D, Osorio, A., 2007. The wind wave models: characteristics, evolution and future aplications in Colombia. Adv. Water Resour. 15, 47–74.spa
dc.relation.referencesMontoya, R.D., Osorio. A.F., 2009. Importance of Accurate Background Winds Combined with Hurricane Wind Models: Case Study of Hurricane Katrina. WISE meeting. Poster session. April 27 to April 30, 2009.spa
dc.relation.referencesOchi, M.K., 1998. Ocean Waves: The Stochastic Approach. Cambridge University Press, United Kingdom, ISBN: 0-521-56378-X 319.spa
dc.relation.referencesOrtiz, J.C, Mercado, A., 2008. An intercomparison of SWAN and Wavewatch III models with Data from NDBC-NOAA buoys at oceanic scales. Coast. Eng. J. 50 (1), 47–73.spa
dc.relation.referencesPerlin, N., Samelson, R.M., Chelton, D.B., 2004. Scatterometer and model wind and wind stress in the Oregon–Northern California coastal zone. Mon. Weather Rev. 132, 2110–2129.spa
dc.relation.referencesPickett, M.H., Tang, W., Rosenfeld, L.K., Wash, C.H., 2003. QuikSCAT satellite comparisons with nearshore buoy wind data off the US west coast. J. Atmos. Oceanic Technol. 20, 1869–1880.spa
dc.relation.referencesPhillips, O.M., 1957. On the generation of waves by turbulent wind. J. Fluid Mech 2 (5), 417–445.spa
dc.relation.referencesPhillips, O.M., 1958. The equilibrium range in the spectrum of wind-generated ocean waves. J. Fluid Mech 4, 426–434.spa
dc.relation.referencesPowell, M.D., Houston, S.H., Amat, L.R., Morisseau-LEROY, N., 1998. The HRD real time surface wind analysis system. J. Wind Eng. Ind Aerodyn. 77-78, 53–64.spa
dc.relation.referencesPowell, M.K., Vickery, P.J., Reinhold, T.A., 2003. Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 422, 279–283.spa
dc.relation.referencesPowell, M.D., Uhlhorn, W.E., Kepert, J., 2009. Estimating maximum surface winds from hurricane reconnaissance measurements. Weather Forecast. 24, 868–883.spa
dc.relation.referencesPowell, M.D., Murillo, S., Dodge, P., Uhlhorn, E., Gamache, J., Cardone, V., Cox, A., Otero, S., Carrasco, N., Annane, B., Fleur, R.St. 2010. Reconstruction of Hurricane Katrina's wind fields for storm surge and wave hindcasting. Ocean Eng. 37, 26–36.spa
dc.relation.referencesRascle, N., Ardhuin, F. A global wave parameter database for geophysical applica- tions. Part 2: Model validation with improved source term parameterization. Ocean Modell. 10.1016/j.ocemod.2012.12.001, in press. http://dx.doi.org/10. 1016/j.ocemod.2012.12.001, in press.spa
dc.relation.referencesReilly, W.C., Herbers, T.H.C., Seymour, R.J, Guza, T.T., 1996. A comparison of directional buoy and fixed platform measurements of pacific swell. Atmos. Oceanic Technol. 13 (1), 231–238.spa
dc.relation.referencesRis, R.C., Holthuijsen, L.H., Booij, N., 1994. A spectral model for waves in the near shore zone. Coast. Eng. 1, 68–78.spa
dc.relation.referencesRis, R.C., Holthuijsen, L.H., Booij, N., 1999. A thirdgeneration wave model for coastal regions. 2. Verification. J. Geophys. Res. 104, 7667–7681.spa
dc.relation.referencesResio, D., Perrie, W., 1991. A numerical study of nonlinear energy fluxes due to wavewave interactions. Part I: Methodology and basic results. J. Fluid Mech 223, 609–629.spa
dc.relation.referencesRogers, W.E., Hwang, P.A., Wang, D.W., 2003. Investigation of wave growth and decay in the swan model: three regional-scale applications. J. Phys. Oceanogr. 33, 366–389.spa
dc.relation.referencesRogers, W.E., Wang, D.W.C., 2006. Directional validation of wave predictions. J. Atmos. Oceanic Technol 24, 504–520.spa
dc.relation.referencesRuti, P.M., Marullo, S., D'Ortenzio, F., Treamant, M., 2008. Comparison of analyzed and measurement wind speeds in the perspective of oceanic simulations over the Mediterranean basin: analysis, QuikSCAT and buoy data. J. Mar. Syst. 70, 33–48.spa
dc.relation.referencesSnyder, R.L., Cox, C.S, 1966. A field study of the wind generation of ocean waves. J. Mar. Res 24, 141–178.spa
dc.relation.referencesSteele, K.E., Wang, D.W., 2004. Question of the pitch-roll buoy response to ocean waves as a simple harmonic oscillator? Ocean Eng. 31, 2121–2138.spa
dc.relation.referencesSteele, K.E., Wang, D.W, Earle, M.D, Michelena, E.D, Dagnall, R.J., 1999. Buoy pitch and roll computed using three angular rate sensors. Coast. Eng. 35, 123–139.spa
dc.relation.referencesStockdon, H.F., Sallenger Jr, A.H., Holman, R.A., Howd, P.A., 2007. A simple model for the spatially-variable coastal response to hurricanes. Mar. Geol. 238, 1–20.spa
dc.relation.referencesSuzuki Isozaki, I., 1994. On the Development of A Global Ocean Wave Model JWA3G. Proc. Pacific Ocean Remote Sensing Conference in Melbourne, Australia, pp. 195–201.spa
dc.relation.referencesSwail, V.R., Cox, A.T., 2000. On the use of NCEP/NCAR reanalysis surface marine wind fields for long term North Atlantic wave hindcast. J. Atmos. Oceanic Technol. 17, 532–545.spa
dc.relation.referencesTolman, H. L., 1989. The Numerical Model WAVEWATCH: A Third Generation Model for the Hindcasting of Wind Waves on Tides in Shelf Seas. Communications on Hydraulic and Geotechnical Engineering, Delft Univ. of Techn., ISSN 0169-6548, Report no. 89-2, 72 pp.spa
dc.relation.referencesTolman, H.L., 1991a. A third-generation model for wind waves on slowly varying, unsteady and inhomogeneous depths and currents. J. Phys. Oceanogr 21, 782–797.spa
dc.relation.referencesTolman, H.L., 1992. Effects of numerics on the physics in a third-generation wind- wave model. J. Phys. Oceanogr 22, 1095–1111.spa
dc.relation.referencesTolman, H.L., Chalikov, D., 1996. Source terms in a third-generation wind-wave model. Journal of Physical Oceanography 26, 2497–2518.spa
dc.relation.referencesTolman, 1999. User Manual and System Documentation of WAVEWATCH- III Version 1.18. Technical Note 166, Ocean Modeling Branch, NCEP, National Weather Service, NOAA, US Department of Commerce, 110 pp. Available from:⟨http://polar.wwb.noaa.gov/waves/wavewatch⟩.spa
dc.relation.referencesTolman, H.L., 2002. User Manual and System Documentation of WAVEWATCH-III Version 2.22. Technical Note. Available from: ⟨http://polar.ncep.noaa.gov/ waves⟩.spa
dc.relation.referencesTolman, H.L., 2002f: Validation of WAVEWATCH III Version 1.15 for a Global Domain. Technical Note 213, NOAA/NWS/NCEP/OMB, 33 pp.spa
dc.relation.referencesTolman, H.L., 2009. User Manual and System Documentation of WAVEWATCH-III Version 3.14. Technical Note. Available from: ⟨http://polar.ncep.noaa.gov/ waves⟩.spa
dc.relation.referencesTolman, H. L., 2002d. Testing of WAVEWATCH III Version 2.22 in NCEP's NWW3 Ocean Wave Model Suite. Technical Note 214, NOAA/NWS/NCEP/OMB, 99 pp.spa
dc.relation.referencesTolman, H.L., Alves, J.H.G.M., 2005. Numerical modeling of wind waves generated by tropical cyclones using moving grids. Ocean Modell. 9, 305–323.spa
dc.relation.referencesTracy, B., and Resio, D.T., 1982. Theory and Calculation of the Nonlinear Energy Transfer between Sea Waves in Deep Water. WES Report 11, US Army Corps of Engineers.spa
dc.relation.referencesUeno, K., Ishizaka, M., 1997. Efficient computationalscheme of nonlinear energy transfer of wind waves. SokkoJihou 64, 75–80.spa
dc.relation.referencesVeerasamy, S, 2008. Comments on reexamination of tropical cyclone wind-pressure relatioship. Weather Forecast. 23, 758–761.spa
dc.relation.referencesWalsh, E.J., Wright, C.W., Vandermark, D., Krabill, W.D., Garcia, A.W., Houston, S.H., Murillo, S.T., Powell, M.D., Black, P.G, Marks, F.D., 2001. Hurricane Directional Wave Spectrum Spatial Variation at Landfall. J. Phys. Oceanogr. 32 (6), 1667–1684.spa
dc.relation.referencesWAMDI Group (13 authors), 1988. The WAM model. A third genereation ocean wave prediction model. J. Phys.Oceanogr 18, 1775–1810.spa
dc.relation.referencesWang, H.T., Freise, C.B, 1997. Error analysis of the directional wave spectra obtained by the NDBC 3-m pitch-roll discus buoy. IEEE J. Oceanic Eng. 22 (4), 639–648. Webb, D.J., 1978. Nonlinear transfers between sea waves. DeepSea Res 25, 279–298. Willoughby, H.E., 2004. Parametric representation of the primary vortex. Part I: observations and evaluation of the Holland (1980) Model. Monthly Weather Rev., 3033–3048.spa
dc.relation.referencesWingeart, K.M., Reilly, W.C.O., Herbers, T.H.C., PWittmann., A., Jenssen, R.E., Tolman, H.L., 2001. Validation of operational global wave prediction models with spectral buoy data. In: Edge, B.L., Hemsley, J.M. (Eds.), Ocean Wave Meas. Anal. ASCE, pp. 590–599.spa
dc.relation.referencesWright, C.W., et al., 2001. Hurricane directional wave spectrum spatial variation in the open ocean. J. Phys. Oceanogr. 31, 2472–2488.spa
dc.relation.referencesXu, F., Perrie, W., Toulany, B., Smith, P.C, 2007. Wind – generated waves in Hurricane Juan. Ocean Modell. 16, 188–205.spa
dc.relation.referencesYoung, I.R., 2006. Directional spectra of hurricane wind waves. J. Geophys. Res. 111, C08020, http://dx.doi.org/10.1029/2006JC003540.spa
dc.relation.referencesZhang, S., Zhang, J., 2005. A new approach to estimate directional spreading parameters of a Cosine-2s Model. J. Atmos. Oceanic Technol. Vol 23 (2), 287–301.spa
dc.relation.referencesZhuo, L., Wang, A., Guo., P., 2008. Numerical simulation of sea surface directional wave spectra under typhoon wind forcing Export. J. Hydrodyn., Ser. B 20 (6), 776–783.spa
dc.relation.referencesZhang, H.M., Bates, J.J., Reynolds, R.W., 2006. Assessment of composite global sampling: sea surface wind speed. Geophys. Res. Lett. 33, L17714, http://dx.doi. org/10.1029/2006GL027086.spa
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem