Show simple item record

dc.creatorDíaz-García, José A.spa
dc.creatorCaro-Lopera, Francisco J.spa
dc.date.accessioned2017-06-15T22:05:18Z
dc.date.available2017-06-15T22:05:18Z
dc.date.created2012
dc.identifier.citationDíaz-García, J. A., & Caro-Lopera, F. J. (2012). Generalised shape theory via SV decomposition I. Metrika, 75(4), 541-565.spa
dc.identifier.issn00261335spa
dc.identifier.urihttp://hdl.handle.net/11407/3405
dc.descriptionThis work finds in terms of zonal polynomials, the non isotropic noncentral elliptical shape distributions via singular value decomposition; it avoids the invariant polynomials and the open problems for their computation. The new shape distributions are easily computable and then the inference procedure is based on exact densities, instead of the published approximations and asymptotic distribution of isotropic models. An application of the technique is illustrated with a classical landmark data of Biology, for this, three Kotz type models are proposed (including Gaussian); then the best one is chosen by using a modified BIC criterion.spa
dc.language.isoengspa
dc.publisherPhysica-Verlag Gmbh und Cospa
dc.publisherSpringer Berlin Heidelbergspa
dc.relation.isversionofhttps://link.springer.com/article/10.1007%2Fs00184-010-0341-5?LI=truespa
dc.rightsinfo:eu-repo/semantics/restrictedAccessspa
dc.sourceMetrika: International Journal for Theoretical and Applied Statisticsspa
dc.subjectShape theoryspa
dc.subjectNon-central and non-isotropic shape densitiesspa
dc.subjectZonal polynomialsspa
dc.titleGeneralised shape theory via SV decomposition Ispa
dc.typeinfo:eu-repo/semantics/articlespa
dc.typeArticlespa
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccessspa
dc.publisher.programTronco común Ingenieríasspa
dc.identifier.doiDOI: 10.1007/s00184-010-0341-5spa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.identifier.e-issn1435926Xspa
dc.source.bibliographicCitationCaro-Lopera FJ, Díaz-García JA, González-Farías G (2009) Noncentral elliptical configuration density. J Multivar Anal 101(1): 32–43spa
dc.source.bibliographicCitationDavis AW (1980) Invariant polynomials with two matrix arguments, extending the zonal polynomials. In: Krishnaiah PR (ed.) Multivariate analysis V. North-Holland Publishing Company, Amsterdam, pp 287–299spa
dc.source.bibliographicCitationDíaz-García JA, Gutiérrez- Jáimez R, Mardia KV (1997) Wishart and Pseudo-Wishart distributions and some applications to shape theory. J Multivar Anal 63: 73–87spa
dc.source.bibliographicCitationDíaz-García JA, Gutiérrez-Jáimez R, Ramos R (2003) Size-and-shape cone, shape disk and configuration densities for the elliptical models. Braz J Probab Stat 17: 135–146spa
dc.source.bibliographicCitationDryden IL, Mardia KV (1998) Statistical shape analysis. Wiley, Chichesterspa
dc.source.bibliographicCitationFang KT, Zhang YT (1990) Generalized multivariate analysis. Science Press, Springer, Beijingspa
dc.source.bibliographicCitationGoodall CR (1991) Procustes methods in the statistical analysis of shape (with discussion). J R Stat Soc Ser B 53: 285–339spa
dc.source.bibliographicCitationGoodall CR, Mardia KV (1993) Multivariate aspects of shape theory. Ann Stat 21: 848–866spa
dc.source.bibliographicCitationGupta AK, Varga T (1993) Elliptically contoured models in statistics. Kluwer, Dordrechtspa
dc.source.bibliographicCitationJames AT (1964) Distributions of matrix variate and latent roots derived from normal samples. Ann Math Stat 35: 475–501spa
dc.source.bibliographicCitationKass RE, Raftery AE (1995) Bayes factor. J Am Stat Soc 90: 773–795spa
dc.source.bibliographicCitationKoev P, Edelman A (2006) The efficient evaluation of the hypergeometric function of a matrix argument. Math Comput 75: 833–846spa
dc.source.bibliographicCitationLe HL, Kendall DG (1993) The Riemannian structure of Euclidean spaces: a novel environment for statistics. Ann Stat 21: 1225–1271spa
dc.source.bibliographicCitationMardia KV, Dryden IL (1989) The statistical analysis of shape data. Biometrika 76(2): 271–281spa
dc.source.bibliographicCitationMuirhead RJ (1982) Aspects of multivariate statistical theory. Wiley series in probability and mathematical statistics. Wiley, New Yorkspa
dc.source.bibliographicCitationRaftery AE (1995) Bayesian model selection in social research. Sociol Methodol 25: 111–163spa
dc.source.bibliographicCitationRissanen J (1978) Modelling by shortest data description. Automatica 14: 465–471spa
dc.source.bibliographicCitationYang ChCh, Yang ChCh (2007) Separating latent classes by information criteria. J Classif 24: 183–203spa
dc.creator.affiliationDíaz-García, José A.; Universidad Autónoma Agraria Antonio Narrospa
dc.creator.affiliationCaro-Lopera, Francisco J.; Universidad de Medellínspa
dc.relation.ispartofesMetrika, May 2012, Volume 75, Issue 4, pp 541–565spa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record