Show simple item record

Aerial biomass estimation in Colombia based on MODIS images

dc.creatorAnaya Acevedo, J. A.spa
dc.creatorChuvieco Salinero, Emiliospa
dc.creatorPalacios Orueta, Aliciaspa
dc.date.accessioned2017-06-15T22:05:18Z
dc.date.available2017-06-15T22:05:18Z
dc.date.created2008
dc.identifier.citationAnaya, J. A., Chuvieco, E., & Palacios, A. (2008). Estimación de biomasa aérea en Colombia a partir de imágenes MODIS. Revista de Teledetección, 2008 (30), 5-22.spa
dc.identifier.issn19888740spa
dc.identifier.urihttp://hdl.handle.net/11407/3412
dc.descriptionSe propone un método para aumentar el nivel de detalle en estimaciones regionales de biomasa aérea basado en productos MODIS y mediciones de biomasa aérea en campo. El área de estudio se delimita entre 10 grados norte y 3 grados sur con un área de 1,139,012 km2 correspondiente al área continental de Colombia. La vegetación se clasificó en pastizales, bosques secundarios y bosques primarios con el fin de mejorar las estimaciones. Se utilizó como variable explicativa de biomasa en bosques primarios y bosques secundarios la proporción de arbolado por píxel de MOD44 (VCF) siguiendo una relación exponencial, mientras que el índice de vegetación EVI (MOD13A1) se utilizó como variable explicativa de biomasa en pastizales siguiendo una relación lineal. La biomasa aérea en pastizales es altamente dinámica en el tiempo y por tanto se estimó su variación con intervalos de 16 días para el año 2004. Por su parte los bosques secundarios tienen una dificultad adicional al no poder separarse de los bosques primarios con el producto MOD44 (VCF) y presentar valores de biomasa muy inferiores, por lo que se utilizaron mapas auxiliares de vegetación. Los intervalos de confianza de la regresión exponencial aumentan al aumentar la biomasa por tanto la incertidumbre es muy alta para la biomasa total: entre 3,473 y 23,693 millones de toneladas con una media de 16,467. Sin embargo la diferencia de los resultados con estudios previos es mínima.spa
dc.descriptionThis paper presents a method to increase level of detail for above ground biomass estimates at a regional scale. The methodology and materials are based on MODIS products and field measurements corresponding to the continental area of Colombia, covering from 4 degrees south up to 12 degrees north of the Equator with a total of 1,139,012 km2 . Vegetation was classified in three broad classes: grasslands, secondary forests and primary forests which have been proved to enhance biomass estimates. MOD44 (VCF) was used as explanatory variable for primary and secondary forests following an exponential relationship, while EVI (MOD13A1) was used as explanatory variable for grasslands following a linear relationship; biomass for this vegetation class was estimated every 16 days given its large variation throughout the year. Vegetation maps where used to separate primary forests from secondary forest, since the latter shown lower biomass levels. Despite the uncertainty our biomass results are within the estimates of previous studies. Confidence intervals of the exponential regression are larger as the biomass values increases, for this reason the uncertainty is quite high ranging from 3,473 to 23,693 millions of tons with a mean of 16,467.spa
dc.language.isospaspa
dc.publisherAsociación Española De Teledetecciónspa
dc.relation.isversionofhttp://www.aet.org.es/revistas/revista30/numero30_1.pdfspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.sourceRevista de Teledetecciónspa
dc.subjectBiomasaspa
dc.subjectTrópicospa
dc.subjectModisspa
dc.subjectVCFspa
dc.subjectEVIspa
dc.subjectBiomassspa
dc.subjectTropicsspa
dc.subjectModisspa
dc.subjectVCFspa
dc.subjectEVIspa
dc.titleEstimación de biomasa aérea en Colombia a partir de imágenes MODISspa
dc.titleAerial biomass estimation in Colombia based on MODIS imagesspa
dc.typeinfo:eu-repo/semantics/articlespa
dc.typeArticlespa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.programIngeniería Ambientalspa
dc.publisher.facultyFacultad de Ingenieríasspa
dc.source.bibliographicCitationBARUCH, Z. 2005. Vegetation-environment relationships and classification of the seasonal savannas in Venezuela. Flora - Morphology, Distribution, Functional Ecology of Plants 200:49-64.spa
dc.source.bibliographicCitationBENITEZ, P.A., y SERNA, J.C. 2004. Deforestación y flujos de carbono en los bosques asociados con ciénagas del Magdalena Medio, Colombia., Universidad Nacional de Colombia, Medellín.spa
dc.source.bibliographicCitationBOLES, S.H., XIAO, X., LIU, J., ZHANG, Q., MUNKHTUYA, S., CHEN, S., y OJIMA, D. 2004. Land cover characterization of Temperate East Asia using multi-temporal VEGETATION sensor data. Remote Sensing of Environment 90:477-489.spa
dc.source.bibliographicCitationBROWN, S. 1997. Estimating biomass and biomass change in tropical forests: a premier. FAO. Forestry Paper 134, Rome.spa
dc.source.bibliographicCitationCIHLAR, J. 2007. Quantification of the regional carbon cycle of the biosphere: Policy, science and land-use decisions. Journal of Environmental Management 85:785-90.spa
dc.source.bibliographicCitationCLARK, D.B., y CLARK, D.A. 2000. Landscapescale variation in forest structure and biomass in a tropical rain forest. Forest Ecology and Management 137:185-198.spa
dc.source.bibliographicCitationCORNARE. 2002. Modelo de financiación alternativo para el manejo sostenible de los bosques de San Nicolás. Universidad Nacional de Colombia - Cornare, Medellín. 2004. LDOPE Tools User's. Release 1.4.spa
dc.source.bibliographicCitationDAAC, O. 2002. NPP Data. Global Change Master Directory.spa
dc.source.bibliographicCitationDEFRIES, R.S., HANSEN, M.C., TOWNSHEND, J.R., JANETOS, A.C., y LOVELAND, T.R. 2000. A new global 1-km dataset of percentage tree cover derived from remote sensing. Global Change Biology 6:247-254. (ed.) 2002. National Acad Sciences.spa
dc.source.bibliographicCitationDONG, J., KAUFMANN, R.K., MYNENI, R.B., TUCKER, C.J., KAUPPI, P.E., LISKI, J., BUERMANN, W., ALEXEYEV, V., y HUGHES, M.K. 2003. Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks. Remote Sensing of Environment 84:393-410.spa
dc.source.bibliographicCitationDRAKE, J.B., DUBAYAH, R.O., KNOX, R.G., CLARK, D.B., y BLAIR, J.B. 2002. Sensitivity of large-footprint lidar to canopy structure and biomass in a neotropical rainforest. Remote Sensing of Environment 81:378-392.spa
dc.source.bibliographicCitationFAO. 2005. Global forest resources assessment (FRA) 2005 - main report. Progress towards sustainable forest management. FAO Forestry paper 147:318.spa
dc.source.bibliographicCitationHACIENDA-IGAC, M.D. 1985. Mapa de Bosques. Instituto Geográfico Agustín Codazzi, Bogotá.spa
dc.source.bibliographicCitationHALL, S.A., BURKE, I.C., BOX, D.O., KAUFMANN, M.R., y STOKER, J.M. 2005. Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests. Forest Ecology and Management 208:189-209.spa
dc.source.bibliographicCitationHANSEN, M.C., DEFRIES, R.S., TOWNSHEND, J.R.G., MARUFU, L., y SOHLBERG, R. 2002. Development of a MODIS tree cover validation data set for Western Province, Zambia. Remote Sensing of Environment 83:320-335.spa
dc.source.bibliographicCitationHANSEN, M.C., DEFRIES, R.S., TOWNSHEND, J.R., CARROLL, M., DIMICELI, C., y SOHLBERG, R. 2003. MOD44B: Vegetation Continuous Fields Collection 3, Version 3.0.0. Earth Interactions:1-20.spa
dc.source.bibliographicCitationHEROLD, M., ACHARD, F., DE FRIES, R.S., SKOLE, D., BROWN, S., y TOWNSHEND, J.R. 2006. Report of he Workshop on Monitoring Tropical Deforestation for Compensated Reductions. Friedrich-Schiller University Jena.spa
dc.source.bibliographicCitationHOUGHTON, R.A., LAWRENCE, K.T., HACKLER, J.L., y BROWN, S. 2001a. The spatial distribution of forest biomass in the Brazilian Amazon: a comparison of estimates. Global Change Biology 7:731-746. HOUGHTON, R.A., LAWRENCE, K.T., HACKLER, J.L., y BROWN, S. 2001b. The spatial distribution of forest biomass in the Brazilian Amazon: a comparison of estimates. Global Change Biology 7:731-746.spa
dc.source.bibliographicCitationHUETE, A., LIU, H., y LEEUWEN, W. 1997. The Use of Vegetation Indices in Forested Regions: Issues of Linearity and Saturation. IEEE:1966-1968.spa
dc.source.bibliographicCitationHUETE, A., DIDAN, K., MIURA, T., RODRIGUEZ, E.P., GAO, X., y FERREIRA, L.G. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment 83:195-213.spa
dc.source.bibliographicCitationJIMENEZ, J., MORENO, A.G., LAVELLE, P., y DECAENS, T. 1998. Population dynamics and adaptive strategies of Martiodrilus carimaguensis (Oligochaeta, Glossoscolecidae), a native species from the well-drained savannas of Colombia. Applied Soil Ecology 9:153-160.spa
dc.source.bibliographicCitationKEELING, H.C., y PHILLIPS, O.L. 2007. The global relationship between forest productivity and biomass. Global Ecology and Biogeography 0:1-14.spa
dc.source.bibliographicCitationLOVELOCK, C.E., FELLER, I.C., MCKEE, K.L., y THOMPSON, R. 2005. Variation in Mangrove Forest Structure and Sediment Characteristics in Bocas del Toro, Panama. Caribbean Journal of Science 41:456-464.spa
dc.source.bibliographicCitationMAYAUX, P., BARTHOLOMÉ, E., MASSART, M., VAN CUTSEM, C., CABRAL, A., NONGUIERMA, A., DIALLO, O., PRETORIUS, C., THOMPSON, M., CHERLET, M., PEKEL, J.-F., DEFOURNY, P., VASCONCELOS, M., DI GREGORIO, A., FRITZ, S., DE GRANDI, G., ELVIDGE, C., VOGT, P., y BELWARD, A. 2003. A land cover map of Africa. European Commission, Joint Research Centre.spa
dc.source.bibliographicCitationMEANS, J.E., ACKER, S.A., HARDING, D.J., BLAIR, J.B., LEFSKY, M.A., COHEN, W.B., HARMON, M.E., y MCKEE, W.A. 1999. Use of Large-Footprint Scanning Airborne Lidar To Estimate Forest Stand Characteristics in the Western Cascades of Oregon. Remote Sensing of Environment 67:298-308.spa
dc.source.bibliographicCitationMENAUT, J.C., ABBADIE, L., LAVENU, F., LOUDJANI, P., y PODAIRE, A. 1991. Biomass burning in West African savannas. Global biomass burning - Atmospheric, climatic, and biospheric implications:133-142.spa
dc.source.bibliographicCitationMOUTINHO, P., y SCHWARTZMAN, S., (eds.) 2005. Tropical deforestation and climate change. Amazon Institute for Environmental Reserach, Belem.spa
dc.source.bibliographicCitationPNAS (ed.) 2001. Proceedings of the National Academy of Sciences of the United States of America.spa
dc.source.bibliographicCitationNASCIMENTO, H.E., y LAURANCE, W.F. 2002. Total aboveground biomass in central Amazonian rainforests: a landscape-scale study. Forest Ecology and Management 168:311- 321.spa
dc.source.bibliographicCitationOLSON, J.S., WATTS, J.A., y ALLISON, L.J. 1985. Major World Ecosystems Complexes Ranked by Carbon in Live Vegetation: A Database, pp. 18, In U. S. D. o. Energy, (ed.). R.E. Millemann, T.A Boden, Carbon Dioxide Information Center, Information Resources Organization, Oak Ridge National Lab.spa
dc.source.bibliographicCitationOLSON, J.S., WATTS, J.A., y ALLISON, L.J. 2003. LBA Regional Carbon in Live Vegetation, 0.5-Degree (Olson) [http://www.daac.ornl.gov] Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A.spa
dc.source.bibliographicCitationS. A. Orrego yJ. I. Del Valle (ed.) 2001. Simposio Internacional Medición y Monitoreo de la Captura de Carbono en Ecosistemas Forestales, Valdivia, Chile.spa
dc.source.bibliographicCitationPRIVETTE, J.L., MYNENI, R.B., KNYAZIKHIN, Y., MUKELABAI, M., ROBERTS, G., TIAN, Y., WANG, Y., y LEBLANC, S.G. 2002. Early spatial and temporal validation of MODIS LAI product in the Southern Africa Kalahari. Remote Sensing of Environment 83:232-243.spa
dc.source.bibliographicCitationQUIÑONES, M. 2002. Polarimetric Data for Tropical Forest Monitoring. Studies at the Colombian Amazon, Wageningen University, Wageningen.spa
dc.source.bibliographicCitationRIPPSTEIN, G., ESCOBAR, G., y MOTTA, F., (eds.) 2001. Agroecología y Biodiversidad de las Sabanas en los Llanos Orientales de Colombia, Vol. 1, pp. 1-302. CIAT; no. 322.spa
dc.source.bibliographicCitationSALDARRIAGA, J.C., DARRELL, C.W., THARP, M.L., y UHL, C. 1998. Long-Term chronosequence of forest succession in the upper Rio Negro of Colombia and Venezuela. Journal of Ecology 76:938-958.spa
dc.source.bibliographicCitationSAN JOSE, J., y MONTES, R.A. 1998. NPP Grassland: Calabozo, Venezuela, 1969-1987. Data set. [http://www.daac.ornl.gov] Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A.spa
dc.source.bibliographicCitationSAN JOSE, J.J., y MONTES, R.A. 2007. Resource apportionment and net primary production across the Orinoco savanna-woodland continuum, Venezuela. Acta Oecológica In Press, Corrected Proof.spa
dc.source.bibliographicCitationSCANLON, T.M., CAYLOR, K.K., MANFREDA, S., LEVIN, S.A., y RODRIGUES, I. 2005. Dynamic response of grass cover to rainfall variability: implications for the function and persistence of savanna ecosystems. Advances in Water Resources 28:291-302.spa
dc.source.bibliographicCitationSCHELLER, R.M., y MLADENOFF, D.J. 2004. A forest growth and biomass module for a landscape simulation model, LANDIS: design, validation, and application. Ecological Modelling 180:211-229.spa
dc.source.bibliographicCitationSCHWARZ, M., ZIMMERMANN, E., y WASER, L.T. 2004. MODIS based continuous fields of tree cover using generalized linear models. IEEE:2377-2380.spa
dc.source.bibliographicCitationSIERRA, C.A., DEL VALLE, J.I., ORREGO, S.A., MORENO, F.H., HARMON, M.E., ZAPATA, M., COLORADO, G.J., HERRERA, M.A., LARA, W., RESTREPO, D.E., BERROUET, L.M., LOAIZA, L.M., y BENJUMEA, J.F. 2007. Total carbon stocks in a tropical forest landscape of the Porce region, Colombia. Forest Ecology and Management 243:299-309.spa
dc.source.bibliographicCitationSTEININGER, M.K. 2000. Satellite estimation of tropical secondary forest above-ground biomass: data from Brazil and Bolivia. International Journal of Remote Sensing 21:1139- 1157.spa
dc.source.bibliographicCitationUNSALAN, C., y BOYER, K. 2003. Linearized Vegetation Indices Using a Formal Statistical Framework. IEEE:982-984.spa
dc.source.bibliographicCitationWESSELS, K.J., PRINCE, S.D., ZAMBATIS, N., MACFADYEN, S., FROST, P.E., y VAN ZYL, D. 2006. Relationship between herbaceous biomass and 1-km2 Advanced Very High Resolution Radiometer (AVHRR) NDVI in Kruger National Park, South Africa. International Journal of Remote Sensing 27:951-973.spa
dc.source.bibliographicCitationZHANG, B., SONG, K., ZHANG, Y., LI, F., y WANG, Z. 2005. Study on the Relationship between Hyperspectral Reflectance and Soybean LAI, aboveground Biomass. IEEE:3583-3586.spa
dc.creator.affiliationAnaya Acevedo, J. A.; Universidad de Medellínspa
dc.creator.affiliationChuvieco Salinero, Emilio; Universidad de Alcaláspa
dc.creator.affiliationPalacios Orueta, Alicia; Universidad Politécnica de Madrid, Españaspa
dc.relation.ispartofesRevista de Teledetección. 2008. 30: 5-22spa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record