Mostrar el registro sencillo del ítem

dc.creatorAnaya Acevedo, Jesús Adolfospa
dc.creatorDuque Londoño, Rosa Alexandraspa
dc.creatorValencia Hernández, Germán Mauriciospa
dc.date.accessioned2017-06-15T22:05:18Z
dc.date.available2017-06-15T22:05:18Z
dc.date.created2008
dc.identifier.citationAnaya Acevedo, J.A.; Duque Londoño, R. A. & Valencia Hernández G. M. (2008). Análisis de textura en imágenes de satélite en el ámbito de la biodiversidad y la estructura en un bosque de los Andes colombianos. Gestión y Ambiente, 11(3). 137-146.spa
dc.identifier.issn0124177X
dc.identifier.urihttp://hdl.handle.net/11407/3413
dc.descriptionEste trabajo evalúa la relación entre la textura calculada a partir de una imagen de satélite Ikonos con la diversidad y la estructura a lo largo de un corredor con 43 parcelas en los bosques andinos de Colombia. Para ello, utiliza índices de diversidad calculados en 43 parcelas y mapas detallados de Usos del Suelo que separan los bosques desde un punto de vista estructural. A partir de la imagen se obtuvieron valores de textura utilizando matrices de co-ocurrencia de niveles de gris, GLCM (por sus siglas en Inglés Gray Level Co¬ occurrence matrix) y GLDV (Grey Level Dif erence Vector). Tradicionalmente la textura se ha interpretado desde el punto de vista cualitativo entre liso y rugoso, sin embargo nuestra aproximación con el uso de matrices permite una medición cuantitativa. Los valores de textura se relacionan con información de campo con dos niveles de detalle distintos: primero con estudios de biodiversidad (índice de Shannon y riqueza) en zonas de bosque a partir de levantamiento de parcelas en campo; y segundo con el mapa de Uso del Suelo (bosque natural, bosque plantado, bosque secundario, cultivos y pastos), zonas consideradas como representativas de la estructura de la vegetación. Los resultados se basan en las relaciones entre estructura y diversidad, textura y diversidad y textura y estructura. La textura en Ikonos muestra una alto potencial para separar bosques en diferentes estados sucesionales; sin embargo, la relación entre datos obtenidos por teledetección y diversidad sigue siendo débil. Se alude frecuentemente a imágenes Landsat de la misma zona a modo de referencia o comparación.spa
dc.descriptionThe relationship between texture calculated from an Ikonos image with diversity and structure was evaluated along a corridor with 43 field plots in the Colombian Andes. Diversity indexes were calculated at the 43 plots and Land Use maps were used as an approach to vegetation structure. Texture was obtained from an Ikonos image using Gray Level Co¬occurrence Matrix GLCM and Gray Level Difference Vector GLDV. Traditionally, texture has been interpreted from a qualitatively point of view from smooth to rough, however our approach using a matrix allows for a quantitative measurement. Texture was related to field information at two different detail levels: first with diversity measurements (Shannon Index and Richness) established at forest plots and second, with classes of a land use map (primary forest, secondary forests, forest plantation, crops and pastures) considered to be representative of vegetation structure. Results are based on relations between structure¬diversity, texture¬diversity and texture¬ structure. Ikonos texture presents a large potential to classify forests at different sucessional stages; however, the relation between diversity and data gathered with remote sensing is still weak. Landsat images are mentioned throughout the text as a reference or comparison with Ikonos images.spa
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.relation.isversionofhttp://revistas.unal.edu.co/index.php/gestion/article/view/14041/14819spa
dc.sourceGestión y Ambientespa
dc.subjectBiodiversidadspa
dc.subjectEstructura del Bosquespa
dc.subjectTexturaspa
dc.subjectIkonosspa
dc.subjectBiodiversityspa
dc.subjectForest Structurespa
dc.subjectTexturespa
dc.titleAnálisis de textura en imágenes de satélite en el ámbito de la biodiversidad y la estructura en un bosque de los Andes colombianosspa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.publisher.programIngeniería Ambientalspa
dc.publisher.facultyFacultad de Ingenieríasspa
dc.relation.ispartofesGestión y Ambiente. Volumen 11, Número 3, 2008.spa
dc.relation.referencesAsner, G.P., 1998, Biophysical and biochemical sources of variability in canopy reflectance. Remote Sensing of the Environment 64, pp. 234­253spa
dc.relation.referencesAsner, G.P. y Bustamante, M.M.C., et al., 2003, Scale dependence of biophysical structure in deforested areas bordering the Tapajos National Forest, Central Amazon. Remote Sensing of Environment 87, pp. 507 ­ 520.spa
dc.relation.referencesBoyd, D.S. y Danson, F.M., 2005. Satellite Remote Sensing of Forest Resources: three decades of research development. Progress in Physical Geography 29, pp. 1­26.spa
dc.relation.referencesClark, M.L., Roberts, D.A., et al., 2005. Hypersectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sensing of Environment 96, pp. 375­398.spa
dc.relation.referencesCohen, W.B., Spies T.A., et al., 1995. Estimating the age and structure of forest in a multiownership landscape of western Oregon, USA. International Journal of Remote Sensing 16, pp. 721­746.spa
dc.relation.referencesCohen, W.B., Maiersperger T.K., et al., 2001. Modelling forest cover attributes as continuous variables in a regional context with Thematic Mapper data. International Journal of Remote Sensing 22, pp. 2279­2310.spa
dc.relation.referencesFoody, G.M. y Cutler, M.E.J., 2003. Tree biodiversity in protected and logged Bornean tropical rain forests and its measurement by satellite remote sensing. Journal of Biogeography 30, pp. 1053­1066.spa
dc.relation.referencesFranklin, S.E., Hall, R.J., et al., 2000. Incorporating texture into classification of forest species composition from airborne multispectral images. International Journal of Remote Sensing 21, pp. 61­79spa
dc.relation.referencesFrohn, R.C. y Hao Y., 2006. Landscape metric performance in analyzing two decades of deforestation in the Amazon Basin of Rondonia, Brazil. Remote Sensing of the Environment 100, pp. 237­251spa
dc.relation.referencesGougeon, F.A., 1995. Comparison of possible multispectral classification schemes for tree crowns individually delineated on high spatial resolution MEIS images. Canadian Journal of Remote Sensing 21, pp. 1­9.spa
dc.relation.referencesGuo, Q., 2007. The diversity­biomass­productivity relationships in grassland management and restoration. Basic and Applied Ecology 8, pp. 199­208spa
dc.relation.referencesHaralick, R.M., Shanmugan, K., et al., 1973. Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics 3, pp. 610­621.spa
dc.relation.referencesKalacska, M., Sanchez­Azofeifa, G.A., et al., 2007. Ecological fingerprinting of ecosystem succession: Estimating secondary dry forest structure and diversity using imaging spectroscopy. Remote Sensing of Environment 108, pp. 82­89.spa
dc.relation.referencesKayitakire, F., Hamel, C., et al., 2006. Retrieving forest structure variables based on image texture analysis and IKONOS­2 imagery. Remote Sensing of the Environment 102, pp. 390­401.spa
dc.relation.referencesKey, T., Warner T.A., et al., 2001. A comparison of multispectral and Multitemporal information in high spatial resolution imagery for classification of individual trees species in a temperate hardwood forest. Remote Sensing of Environment 75, pp. 100­112.spa
dc.relation.referencesPCI Geomatics., 2003. Version 9.1. Online help, Ontario, Canada www.pcigeomatics.comspa
dc.relation.referencesPerdigao, V. y Annoni, A., 1997. Technical and methodological guide for updating CORINE Land Cover database. Joint Research Centre (JRC) and European Environment Agency (EEA), Italy, EUR 17288 EN.spa
dc.relation.referencesPerry, G.L. y Enright, N.J., 2007. Contrasting outcomes of spatially implicit and spatially explicit models of vegetation dynamics in a forest­shrubland mosaic. Ecological Modelling (en prensa). Qinghong, L., 1995. A model for species diversity monitoring at community level and its applications. Environ. Monit. Assess 34, pp. 271­287.spa
dc.relation.referencesThenkabail, P.S., et al, 2003. Detecting floristic structure and pattern across tropographic and moisture gradients in a mixed species Central African forest using IKONOS and Landsat­7 ETM+ images. International Journal of Applied Earth Observation and Geoinformation 4, pp. 255­270.spa
dc.relation.referencesUniversidad Nacional de Colombia, 2002. Inventario Forestal, informe técnico final. Modelo de financiación alternativo para el manejo sostenible de los bosques de San Nicolás. Medellín. CORNARE­OIMT. 150 P. Van Aart, J.A.N, Wynne, R.H., 2001. Spectral separability among six southern tree species. Photogrammetric Engineering and Remote Sensing 67, pp. 1367­1375.spa
dc.relation.referencesWang, L., et al., 2004. Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panamá. Remote Sensing of Environment 91, pp. 432­440.spa
dc.relation.referencesWulder, M.A., Hall R.J., et al., 2004. High spatial resolution Remotely Sensed Data for Ecosystem Characterization. BioScience 54, pp. 511­521spa
dc.identifier.eissn23575905
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem