Mostrar el registro sencillo del ítem
Análisis de textura en imágenes de satélite en el ámbito de la biodiversidad y la estructura en un bosque de los Andes colombianos
dc.creator | Anaya Acevedo, Jesús Adolfo | spa |
dc.creator | Duque Londoño, Rosa Alexandra | spa |
dc.creator | Valencia Hernández, Germán Mauricio | spa |
dc.date.accessioned | 2017-06-15T22:05:18Z | |
dc.date.available | 2017-06-15T22:05:18Z | |
dc.date.created | 2008 | |
dc.identifier.citation | Anaya Acevedo, J.A.; Duque Londoño, R. A. & Valencia Hernández G. M. (2008). Análisis de textura en imágenes de satélite en el ámbito de la biodiversidad y la estructura en un bosque de los Andes colombianos. Gestión y Ambiente, 11(3). 137-146. | spa |
dc.identifier.issn | 0124177X | |
dc.identifier.uri | http://hdl.handle.net/11407/3413 | |
dc.description | Este trabajo evalúa la relación entre la textura calculada a partir de una imagen de satélite Ikonos con la diversidad y la estructura a lo largo de un corredor con 43 parcelas en los bosques andinos de Colombia. Para ello, utiliza índices de diversidad calculados en 43 parcelas y mapas detallados de Usos del Suelo que separan los bosques desde un punto de vista estructural. A partir de la imagen se obtuvieron valores de textura utilizando matrices de co-ocurrencia de niveles de gris, GLCM (por sus siglas en Inglés Gray Level Co¬ occurrence matrix) y GLDV (Grey Level Dif erence Vector). Tradicionalmente la textura se ha interpretado desde el punto de vista cualitativo entre liso y rugoso, sin embargo nuestra aproximación con el uso de matrices permite una medición cuantitativa. Los valores de textura se relacionan con información de campo con dos niveles de detalle distintos: primero con estudios de biodiversidad (índice de Shannon y riqueza) en zonas de bosque a partir de levantamiento de parcelas en campo; y segundo con el mapa de Uso del Suelo (bosque natural, bosque plantado, bosque secundario, cultivos y pastos), zonas consideradas como representativas de la estructura de la vegetación. Los resultados se basan en las relaciones entre estructura y diversidad, textura y diversidad y textura y estructura. La textura en Ikonos muestra una alto potencial para separar bosques en diferentes estados sucesionales; sin embargo, la relación entre datos obtenidos por teledetección y diversidad sigue siendo débil. Se alude frecuentemente a imágenes Landsat de la misma zona a modo de referencia o comparación. | spa |
dc.description | The relationship between texture calculated from an Ikonos image with diversity and structure was evaluated along a corridor with 43 field plots in the Colombian Andes. Diversity indexes were calculated at the 43 plots and Land Use maps were used as an approach to vegetation structure. Texture was obtained from an Ikonos image using Gray Level Co¬occurrence Matrix GLCM and Gray Level Difference Vector GLDV. Traditionally, texture has been interpreted from a qualitatively point of view from smooth to rough, however our approach using a matrix allows for a quantitative measurement. Texture was related to field information at two different detail levels: first with diversity measurements (Shannon Index and Richness) established at forest plots and second, with classes of a land use map (primary forest, secondary forests, forest plantation, crops and pastures) considered to be representative of vegetation structure. Results are based on relations between structure¬diversity, texture¬diversity and texture¬ structure. Ikonos texture presents a large potential to classify forests at different sucessional stages; however, the relation between diversity and data gathered with remote sensing is still weak. Landsat images are mentioned throughout the text as a reference or comparison with Ikonos images. | spa |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.relation.isversionof | http://revistas.unal.edu.co/index.php/gestion/article/view/14041/14819 | spa |
dc.source | Gestión y Ambiente | spa |
dc.subject | Biodiversidad | spa |
dc.subject | Estructura del Bosque | spa |
dc.subject | Textura | spa |
dc.subject | Ikonos | spa |
dc.subject | Biodiversity | spa |
dc.subject | Forest Structure | spa |
dc.subject | Texture | spa |
dc.title | Análisis de textura en imágenes de satélite en el ámbito de la biodiversidad y la estructura en un bosque de los Andes colombianos | spa |
dc.type | Article | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.publisher.program | Ingeniería Ambiental | spa |
dc.publisher.faculty | Facultad de Ingenierías | spa |
dc.relation.ispartofes | Gestión y Ambiente. Volumen 11, Número 3, 2008. | spa |
dc.relation.references | Asner, G.P., 1998, Biophysical and biochemical sources of variability in canopy reflectance. Remote Sensing of the Environment 64, pp. 234253 | spa |
dc.relation.references | Asner, G.P. y Bustamante, M.M.C., et al., 2003, Scale dependence of biophysical structure in deforested areas bordering the Tapajos National Forest, Central Amazon. Remote Sensing of Environment 87, pp. 507 520. | spa |
dc.relation.references | Boyd, D.S. y Danson, F.M., 2005. Satellite Remote Sensing of Forest Resources: three decades of research development. Progress in Physical Geography 29, pp. 126. | spa |
dc.relation.references | Clark, M.L., Roberts, D.A., et al., 2005. Hypersectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sensing of Environment 96, pp. 375398. | spa |
dc.relation.references | Cohen, W.B., Spies T.A., et al., 1995. Estimating the age and structure of forest in a multiownership landscape of western Oregon, USA. International Journal of Remote Sensing 16, pp. 721746. | spa |
dc.relation.references | Cohen, W.B., Maiersperger T.K., et al., 2001. Modelling forest cover attributes as continuous variables in a regional context with Thematic Mapper data. International Journal of Remote Sensing 22, pp. 22792310. | spa |
dc.relation.references | Foody, G.M. y Cutler, M.E.J., 2003. Tree biodiversity in protected and logged Bornean tropical rain forests and its measurement by satellite remote sensing. Journal of Biogeography 30, pp. 10531066. | spa |
dc.relation.references | Franklin, S.E., Hall, R.J., et al., 2000. Incorporating texture into classification of forest species composition from airborne multispectral images. International Journal of Remote Sensing 21, pp. 6179 | spa |
dc.relation.references | Frohn, R.C. y Hao Y., 2006. Landscape metric performance in analyzing two decades of deforestation in the Amazon Basin of Rondonia, Brazil. Remote Sensing of the Environment 100, pp. 237251 | spa |
dc.relation.references | Gougeon, F.A., 1995. Comparison of possible multispectral classification schemes for tree crowns individually delineated on high spatial resolution MEIS images. Canadian Journal of Remote Sensing 21, pp. 19. | spa |
dc.relation.references | Guo, Q., 2007. The diversitybiomassproductivity relationships in grassland management and restoration. Basic and Applied Ecology 8, pp. 199208 | spa |
dc.relation.references | Haralick, R.M., Shanmugan, K., et al., 1973. Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics 3, pp. 610621. | spa |
dc.relation.references | Kalacska, M., SanchezAzofeifa, G.A., et al., 2007. Ecological fingerprinting of ecosystem succession: Estimating secondary dry forest structure and diversity using imaging spectroscopy. Remote Sensing of Environment 108, pp. 8289. | spa |
dc.relation.references | Kayitakire, F., Hamel, C., et al., 2006. Retrieving forest structure variables based on image texture analysis and IKONOS2 imagery. Remote Sensing of the Environment 102, pp. 390401. | spa |
dc.relation.references | Key, T., Warner T.A., et al., 2001. A comparison of multispectral and Multitemporal information in high spatial resolution imagery for classification of individual trees species in a temperate hardwood forest. Remote Sensing of Environment 75, pp. 100112. | spa |
dc.relation.references | PCI Geomatics., 2003. Version 9.1. Online help, Ontario, Canada www.pcigeomatics.com | spa |
dc.relation.references | Perdigao, V. y Annoni, A., 1997. Technical and methodological guide for updating CORINE Land Cover database. Joint Research Centre (JRC) and European Environment Agency (EEA), Italy, EUR 17288 EN. | spa |
dc.relation.references | Perry, G.L. y Enright, N.J., 2007. Contrasting outcomes of spatially implicit and spatially explicit models of vegetation dynamics in a forestshrubland mosaic. Ecological Modelling (en prensa). Qinghong, L., 1995. A model for species diversity monitoring at community level and its applications. Environ. Monit. Assess 34, pp. 271287. | spa |
dc.relation.references | Thenkabail, P.S., et al, 2003. Detecting floristic structure and pattern across tropographic and moisture gradients in a mixed species Central African forest using IKONOS and Landsat7 ETM+ images. International Journal of Applied Earth Observation and Geoinformation 4, pp. 255270. | spa |
dc.relation.references | Universidad Nacional de Colombia, 2002. Inventario Forestal, informe técnico final. Modelo de financiación alternativo para el manejo sostenible de los bosques de San Nicolás. Medellín. CORNAREOIMT. 150 P. Van Aart, J.A.N, Wynne, R.H., 2001. Spectral separability among six southern tree species. Photogrammetric Engineering and Remote Sensing 67, pp. 13671375. | spa |
dc.relation.references | Wang, L., et al., 2004. Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panamá. Remote Sensing of Environment 91, pp. 432440. | spa |
dc.relation.references | Wulder, M.A., Hall R.J., et al., 2004. High spatial resolution Remotely Sensed Data for Ecosystem Characterization. BioScience 54, pp. 511521 | spa |
dc.identifier.eissn | 23575905 | |
dc.type.driver | info:eu-repo/semantics/article |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
General [206]