Mostrar el registro sencillo del ítem

dc.creatorRodríguez-Kessler P.L.spa
dc.creatorPan S.spa
dc.creatorFlorez E.spa
dc.creatorCabellos J.L.spa
dc.creatorMerino G.spa
dc.date.accessioned2017-12-19T19:36:41Z
dc.date.available2017-12-19T19:36:41Z
dc.date.created2017
dc.identifier.issn19327447
dc.identifier.urihttp://hdl.handle.net/11407/4250
dc.description.abstractStructural properties of AgnRh (n ≤ 15) clusters are investigated using a successive growth algorithm coupled with density functional theory computations. The structures of the clusters are revisited, including a detailed discussion of their electronic properties. In contrast to these previous contributions, the lowest energy structures of the clusters are planar for n = 3-6, while three-dimensional for n = 7 onward. Our present searches identify new lowest energy structures for n = 3-6 and 9-13. The most stable isomers are selected to study the adsorption of NO. The size-dependent reactivity of the clusters indicates that Rh atom acts as a more effective adsorption site for NO than Ag. Since the transition from Rh-exposed to Rh-encapsulated structures occurs at n = 9, the reactivity toward NO for AgnRh clusters with n ≤ 8 is considerably higher than that for the larger homologues. Further, the results show that doping Agn clusters with Rh increases the reactivity toward NO adsorption. © 2017 American Chemical Society.eng
dc.language.isoeng
dc.publisherAmerican Chemical Societyspa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85029376158&doi=10.1021%2facs.jpcc.7b05048&partnerID=40&md5=f446b3c3841d966d659f442e128b9a24spa
dc.sourceScopusspa
dc.titleStructural Evolution of the Rhodium-Doped Silver Clusters AgnRh (n ≤ 15) and Their Reactivity toward NOspa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.contributor.affiliationRodríguez-Kessler, P.L., Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Apdo. Postal 73, Cordemex, Mérida, Yucatán, Mexicospa
dc.contributor.affiliationPan, S., Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Apdo. Postal 73, Cordemex, Mérida, Yucatán, Mexicospa
dc.contributor.affiliationFlorez, E., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiaspa
dc.contributor.affiliationCabellos, J.L., Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Apdo. Postal 73, Cordemex, Mérida, Yucatán, Mexicospa
dc.contributor.affiliationMerino, G., Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Apdo. Postal 73, Cordemex, Mérida, Yucatán, Mexicospa
dc.identifier.doi10.1021/acs.jpcc.7b05048
dc.subject.keywordAdsorptioneng
dc.subject.keywordBinary alloyseng
dc.subject.keywordDensity functional theoryeng
dc.subject.keywordElectronic propertieseng
dc.subject.keywordIsomerseng
dc.subject.keywordRhodiumeng
dc.subject.keywordAdsorption of noeng
dc.subject.keywordAdsorption siteeng
dc.subject.keywordGrowth algorithmseng
dc.subject.keywordLowest energy structureeng
dc.subject.keywordSilver clustereng
dc.subject.keywordSize-dependent reactivityeng
dc.subject.keywordStable isomerseng
dc.subject.keywordStructural evolutioneng
dc.subject.keywordRhodium alloyseng
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.abstractStructural properties of AgnRh (n ≤ 15) clusters are investigated using a successive growth algorithm coupled with density functional theory computations. The structures of the clusters are revisited, including a detailed discussion of their electronic properties. In contrast to these previous contributions, the lowest energy structures of the clusters are planar for n = 3-6, while three-dimensional for n = 7 onward. Our present searches identify new lowest energy structures for n = 3-6 and 9-13. The most stable isomers are selected to study the adsorption of NO. The size-dependent reactivity of the clusters indicates that Rh atom acts as a more effective adsorption site for NO than Ag. Since the transition from Rh-exposed to Rh-encapsulated structures occurs at n = 9, the reactivity toward NO for AgnRh clusters with n ≤ 8 is considerably higher than that for the larger homologues. Further, the results show that doping Agn clusters with Rh increases the reactivity toward NO adsorption. © 2017 American Chemical Society.eng
dc.creator.affiliationDepartamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Apdo. Postal 73, Cordemex, Mérida, Yucatán, Mexicospa
dc.creator.affiliationDepartamento de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiaspa
dc.relation.ispartofesJournal of Physical Chemistry Cspa
dc.relation.ispartofesJournal of Physical Chemistry C Volume 121, Issue 35, 7 September 2017, Pages 19420-19427spa
dc.relation.referencesAdamo, C., & Barone, V. (1999). Toward reliable density functional methods without adjustable parameters: The PBE0 model. Journal of Chemical Physics, 110(13), 6158-6170.spa
dc.relation.referencesBandyopadhyay, D., & Sen, P. (2010). Density functional investigation of structure and stability of ge n and GenNi (n = 1-20) clusters: Validity of the electron counting rule. Journal of Physical Chemistry A, 114(4), 1835-1842. doi:10.1021/jp905561nspa
dc.relation.referencesBecerril, D., & Noguez, C. (2015). Adsorption of a methylthio radical on silver nanoparticles: Size dependence. Journal of Physical Chemistry C, 119(20), 10824-10835. doi:10.1021/jp509727qspa
dc.relation.referencesBernhardt, T. M., Socaciu-Siebert, L. D., Hagen, J., & Wöste, L. (2005). Size and composition dependence in CO oxidation reaction on small free gold, silver, and binary silver-gold cluster anions. Applied Catalysis A: General, 291(1-2), 170-178. doi:10.1016/j.apcata.2005.02.041spa
dc.relation.referencesChen, M., Dyer, J. E., Li, K., & Dixon, D. A. (2013). Prediction of structures and atomization energies of small silver clusters, (ag)n, n < 100. Journal of Physical Chemistry A, 117(34), 8298-8313. doi:10.1021/jp404493wspa
dc.relation.referencesDong, R., Chen, X., Zhao, H., Wang, X., Shu, H., Ding, Z., & Wei, L. (2011). Structural, electronic and magnetic properties of AgnFe clusters (n ≤ 15): Local magnetic moment interacting with delocalized electrons. Journal of Physics B: Atomic, Molecular and Optical Physics, 44(3) doi:10.1088/0953-4075/44/3/035102spa
dc.relation.referencesDuarte, H. A., & Salahub, D. R. (1999). NO adsorption on pd clusters. A density functional study. Topics in Catalysis, 9(3-4), 123-133.spa
dc.relation.referencesFournier, R. (2001). Theoretical study of the structure of silver clusters. Journal of Chemical Physics, 115(5), 2165-2177. doi:10.1063/1.1383288spa
dc.relation.referencesFrisch, M. J. (2009). Gaussian 09.spa
dc.relation.referencesGong, X., Ju, W., Li, T., Feng, Z., & Wang, Y. (2015). Spin–orbit splitting and magnetism of icosahedral M@Ag12 clusters (M = 3d and 4d atoms). Journal of Cluster Science, 26(3), 759-773. doi:10.1007/s10876-014-0737-xspa
dc.relation.referencesGrönbeck, H., Hellman, A., & Gavrin, A. (2007). Structural, energetic, and vibrational properties of NOx adsorption on agn, n = 1-8. Journal of Physical Chemistry A, 111(27), 6062-6067. doi:10.1021/jp071117dspa
dc.relation.referencesGutsev, G. L., Mochena, M. D., Johnson, E., & Bauschlicher Jr., C. W. (2006). Dissociative and associative attachment of NO to iron clusters. Journal of Chemical Physics, 125(19) doi:10.1063/1.2378831spa
dc.relation.referencesHarb, M., Rabilloud, F., Simon, D., Rydlo, A., Lecoultre, S., Conus, F., . . . Félix, C. (2008). Optical absorption of small silver clusters: Agn, (n=4-22). Journal of Chemical Physics, 129(19) doi:10.1063/1.3013557spa
dc.relation.referencesHarding, D., Mackenzie, S. R., & Walsh, T. R. (2006). Structural isomers and reactivity for Rh6 and rhe 6+. Journal of Physical Chemistry B, 110(37), 18272-18277. doi:10.1021/jp062603ospa
dc.relation.referencesHirabayashi, S., & Ichihashi, M. (2016). Reactions of ti- and V-doped cu cluster cations with nitric oxide and oxygen: Size dependence and preferential NO adsorption. Journal of Physical Chemistry A, 120(10), 1637-1643. doi:10.1021/acs.jpca.6b00206spa
dc.relation.referencesHohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical Review, 136(3B), B864-B871. doi:10.1103/PhysRev.136.B864spa
dc.relation.referencesItoh, M., Kumar, V., Adschiri, T., & Kawazoe, Y. (2009). Comprehensive study of sodium, copper, and silver clusters over a wide range of sizes 2≤N≤75. Journal of Chemical Physics, 131(17) doi:10.1063/1.3187934spa
dc.relation.referencesJackschath, C., Rabin, I., & Schulze, W. (1992). Electron impact ionization of silver clusters agn, n≦36. Zeitschrift Für Physik D Atoms, Molecules and Clusters, 22(2), 517-520. doi:10.1007/BF01426093spa
dc.relation.referencesJanssens, E., Neukermans, S., Nguyen, H. M. T., Nguyen, M. T., & Lievens, P. (2005). Quenching of the magnetic moment of a transition metal dopant in silver clusters. Physical Review Letters, 94(11) doi:10.1103/PhysRevLett.94.113401spa
dc.relation.referencesJanssens, E., Neukermans, S., Wang, X., Veldeman, N., Silverans, R. E., & Lievens, P. (2005). Stability patterns of transition metal doped silver clusters: Dopant- and size-dependent electron delocalization.European Physical Journal D, 34(1-3), 23-27. doi:10.1140/epjd/e2005-00106-9spa
dc.relation.referencesJensen, W. B. (2005). The origin of the 18-electron rule. Journal of Chemical Education, 82(1), 28.spa
dc.relation.referencesJin, Y., Maroulis, G., Kuang, X., Ding, L., Lu, C., Wang, J., . . . Ju, M. (2015). Geometries, stabilities and fragmental channels of neutral and charged sulfur clusters: SnQ (n = 3-20, Q = 0, ±1). Physical Chemistry Chemical Physics, 17(20), 13590-13597. doi:10.1039/c5cp00728cspa
dc.relation.referencesJin, Y., Tian, Y., Kuang, X., Zhang, C., Lu, C., Wang, J., . . . Ju, M. (2015). Ab initio search for global minimum structures of pure and boron doped silver clusters. Journal of Physical Chemistry A, 119(25), 6738-6745. doi:10.1021/acs.jpca.5b03542spa
dc.relation.referencesKohaut, S., & Springborg, M. (2016). Structural, energetic, and magnetic properties of agn-mRhm and agm rhn-m clusters with n ≤ 20 and m = 0,1. Journal of Cluster Science, 27(3), 913-933. doi:10.1007/s10876-016-1003-1spa
dc.relation.referencesKohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140(4A), A1133-A1138. doi:10.1103/PhysRev.140.A1133spa
dc.relation.referencesKotsifa, A., Halkides, T. I., Kondarides, D. I., & Verykios, X. E. (2002). Activity enhancement of bimetallic rh-Ag/Al2O3 catalysts for selective catalytic reduction of NO by C3H6. Catalysis Letters, 79(1-4), 113-117. doi:10.1023/A:1015308408840spa
dc.relation.referencesKoyasu, K., Akutsu, M., Mitsui, M., & Nakajima, A. (2005). Selective formation of MSi16 (M = sc, ti, and V). Journal of the American Chemical Society, 127(14), 4998-4999. doi:10.1021/ja045380tspa
dc.relation.referencesLi, Y., Lyon, J. T., Woodham, A. P., Fielicke, A., & Janssens, E. (2014). The geometric structure of silver-doped silicon clusters. ChemPhysChem, 15(2), 328-336. doi:10.1002/cphc.201300944spa
dc.relation.referencesLiu, X., Tian, D., Ren, S., & Meng, C. (2015). Structure sensitivity of NO adsorption-dissociation on pdn (n = 8, 13, 19, 25) clusters. Journal of Physical Chemistry C, 119(23), 12941-12948. doi:10.1021/acs.jpcc.5b01141spa
dc.relation.referencesMatulis, V. E., & Ivaskevich, O. A. (2006). Comparative DFT study of electronic structure and geometry of copper and silver clusters: Interaction with NO molecule. Computational Materials Science, 35(3), 268-271. doi:10.1016/j.commatsci.2004.08.011spa
dc.relation.referencesMokkath, J. H., & Schwingenschlögl, U. (2014). Structural and optical properties of si-doped ag clusters. Journal of Physical Chemistry C, 118(9), 4885-4889. doi:10.1021/jp4112958spa
dc.relation.referencesNhat, P. V., & Nguyen, M. T. (2011). Trends in structural, electronic and energetic properties of bimetallic vanadium-gold clusters AunV with n = 1-14. Physical Chemistry Chemical Physics, 13(36), 16254-16264. doi:10.1039/c1cp22078kspa
dc.relation.referencesNhat, P. V., & Nguyen, M. T. (2011). Trends in structural, electronic and energetic properties of bimetallic vanadium-gold clusters AunV with n = 1-14. Physical Chemistry Chemical Physics, 13(36), 16254-16264. doi:10.1039/c1cp22078kspa
dc.relation.referencesPereiro, M., & Baldomir, D. (2007). Structure of small silver clusters and static response to an external electric field. Physical Review A - Atomic, Molecular, and Optical Physics, 75(3) doi:10.1103/PhysRevA.75.033202spa
dc.relation.referencesPeyser, L. A., Vinson, A. E., Bartko, A. P., & Dickson, R. M. (2001). Photoactivated fluorescence from individual silver nanoclusters. Science, 291(5501), 103-106. doi:10.1126/science.291.5501.103spa
dc.relation.referencesPiotrowski, M. J., Piquini, P., Zeng, Z., & Da Silva, J. L. F. (2012). Adsorption of NO on the rh 13, pd 13, ir 13, and pt 13 clusters: A density functional theory investigation. Journal of Physical Chemistry C, 116(38), 20540-20549. doi:10.1021/jp303167bspa
dc.relation.referencesRan, Q., Schmude Jr., R. W., Gingerich, K. A., Wilhite, D. W., & Kingcade Jr., J. E. (1993). Dissociation energy and enthalpy of formation of gaseous silver dimer. Journal of Physical Chemistry, 97(32), 8535-8540.spa
dc.relation.referencesRao, B. K., & Jena, P. (1999). Evolution of the electronic structure and properties of neutral and charged aluminum clusters: A comprehensive analysis. Journal of Chemical Physics, 111(5), 1890-1904.spa
dc.relation.referencesRodríguez-Kessler, P. L., & Rodríguez-Domínguez, A. R. (2015). Stability of ni clusters and the adsorption of CH4: First-principles calculations. Journal of Physical Chemistry C, 119(22), 12378-12384. doi:10.1021/acs.jpcc.5b01738spa
dc.relation.referencesRodríguez-Kessler, P. L., & Rodríguez-Domínguez, A. R. (2015). Structural, electronic, and magnetic properties of AgnCo (n=1-9) clusters: A first-principles study. Computational and Theoretical Chemistry, 1066, 55-61. doi:10.1016/j.comptc.2015.05.009spa
dc.relation.referencesRodríguez-Kessler, P. L., & Rodríguez-Domínguez, A. R. (2016). Structures and electronic properties of TinV (n = 1-16) clusters: First-principles calculations. Journal of Physical Chemistry A, 120(15), 2401-2407. doi:10.1021/acs.jpca.6b00224spa
dc.relation.referencesRomo-Ávila, S. L., & Guirado-López, R. A. (2012). Adsorption of nitric oxide on small rh n± clusters: Role of the local atomic environment on the dissociation of the N-O bond. Journal of Physical Chemistry A, 116(3), 1059-1068. doi:10.1021/jp208847rspa
dc.relation.referencesSazama, P., Čapek, L., Drobná, H., Sobalík, Z., Dědeček, J., Arve, K., & Wichterlová, B. (2005). Enhancement of decane-SCR-NOx over Ag/alumina by hydrogen. reaction kinetics and in situ FTIR and UV-vis study. Journal of Catalysis, 232(2), 302-317. doi:10.1016/j.jcat.2005.03.013spa
dc.relation.referencesShimizu, K. -., Sugino, K., Sawabe, K., & Satsuma, A. (2009). Oxidant-free dehydrogenation of alcohols heterogeneously catalyzed by cooperation of silver clusters and acid-base sites on alumina. Chemistry - A European Journal, 15(10), 2341-2351. doi:10.1002/chem.200802222spa
dc.relation.referencesSimard, B., Hackett, P. A., James, A. M., & Langridge-Smith, P. R. R. (1991). The bond length of silver dimer. Chemical Physics Letters, 186(4-5), 415-422. doi:10.1016/0009-2614(91)90201-Jspa
dc.relation.referencesSoler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., & Sánchez-Portal, D. (2002). The SIESTA method for ab initio order-N materials simulation. Journal of Physics Condensed Matter, 14(11), 2745-2779. doi:10.1088/0953-8984/14/11/302spa
dc.relation.referencesSun, W. G., Wang, J. J., Lu, C., Xia, X. X., Kuang, X. Y., & Hermann, A. (2017). Evolution of the structural and electronic properties of medium-sized sodium clusters: A honeycomb-like Na20 cluster. Inorganic Chemistry, 56(3), 1241-1248. doi:10.1021/acs.inorgchem.6b02340spa
dc.relation.referencesTian, D., Zhang, H., & Zhao, J. (2007). Structure and structural evolution of agn (n = 3 - 22) clusters using a genetic algorithm and density functional theory method. Solid State Communications, 144(3-4), 174-179. doi:10.1016/j.ssc.2007.05.020spa
dc.relation.referencesTorres, M. B., Aguilera-Granja, F., Balbás, L. C., & Vega, A. (2011). Ab initio study of the adsorption of NO on the rh 6 + cluster. Journal of Physical Chemistry A, 115(30), 8350-8360. doi:10.1021/jp202511wspa
dc.relation.referencesWang, Y., George, T. F., Lindsay, D. M., & Beri, A. C. (1987). The hückel model for small metal clusters. I. geometry, stability, and relationship to graph theory. The Journal of Chemical Physics, 86(6), 3493-3499.spa
dc.relation.referencesWeigend, F., & Ahlrichs, R. (2005). Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics, 7(18), 3297-3305. doi:10.1039/b508541aspa
dc.relation.referencesXia, X., Kuang, X., Lu, C., Jin, Y., Xing, X., Merino, G., & Hermann, A. (2016). Deciphering the structural evolution and electronic properties of magnesium clusters: An aromatic homonuclear metal Mg17 cluster. Journal of Physical Chemistry A, 120(40), 7947-7954. doi:10.1021/acs.jpca.6b07322spa
dc.relation.referencesYang, M., Jackson, K. A., & Jellinek, J. (2006). First-principles study of intermediate size silver clusters: Shape evolution and its impact on cluster properties. Journal of Chemical Physics, 125(14) doi:10.1063/1.2351818spa
dc.relation.referencesZhang, M., Gu, X. -., Zhang, W. -., Zhao, L. -., He, L. -., & Luo, Y. -. (2010). Probing the magnetic and structural properties of the 3d, 4d, 5d impurities encapsulated in an icosahedral Ag12 cage. Physica B: Condensed Matter, 405(2), 642-648. doi:10.1016/j.physb.2009.09.080spa
dc.relation.referencesZhang, W., Yan, S. -., Zhao, Z. -., & Zhang, H. -. (2012). Stabilities and fragmentation behaviors of ag nclusters(n = 234). Journal of Theoretical and Computational Chemistry, 11(5), 953-964. doi:10.1142/S0219633612500642spa
dc.relation.referencesZibordi-Besse, L., Tereshchuk, P., Chaves, A. S., & Da Silva, J. L. F. (2016). Ethanol and water adsorption on transition-metal 13-atom clusters: A density functional theory investigation within van der waals corrections. Journal of Physical Chemistry A, 120(24), 4231-4240. doi:10.1021/acs.jpca.6b03467spa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem