Mostrar el registro sencillo del ítem
Structural Evolution of the Rhodium-Doped Silver Clusters AgnRh (n ≤ 15) and Their Reactivity toward NO
dc.creator | Rodríguez-Kessler P.L. | spa |
dc.creator | Pan S. | spa |
dc.creator | Florez E. | spa |
dc.creator | Cabellos J.L. | spa |
dc.creator | Merino G. | spa |
dc.date.accessioned | 2017-12-19T19:36:41Z | |
dc.date.available | 2017-12-19T19:36:41Z | |
dc.date.created | 2017 | |
dc.identifier.issn | 19327447 | |
dc.identifier.uri | http://hdl.handle.net/11407/4250 | |
dc.description.abstract | Structural properties of AgnRh (n ≤ 15) clusters are investigated using a successive growth algorithm coupled with density functional theory computations. The structures of the clusters are revisited, including a detailed discussion of their electronic properties. In contrast to these previous contributions, the lowest energy structures of the clusters are planar for n = 3-6, while three-dimensional for n = 7 onward. Our present searches identify new lowest energy structures for n = 3-6 and 9-13. The most stable isomers are selected to study the adsorption of NO. The size-dependent reactivity of the clusters indicates that Rh atom acts as a more effective adsorption site for NO than Ag. Since the transition from Rh-exposed to Rh-encapsulated structures occurs at n = 9, the reactivity toward NO for AgnRh clusters with n ≤ 8 is considerably higher than that for the larger homologues. Further, the results show that doping Agn clusters with Rh increases the reactivity toward NO adsorption. © 2017 American Chemical Society. | eng |
dc.language.iso | eng | |
dc.publisher | American Chemical Society | spa |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029376158&doi=10.1021%2facs.jpcc.7b05048&partnerID=40&md5=f446b3c3841d966d659f442e128b9a24 | spa |
dc.source | Scopus | spa |
dc.title | Structural Evolution of the Rhodium-Doped Silver Clusters AgnRh (n ≤ 15) and Their Reactivity toward NO | spa |
dc.type | Article | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.contributor.affiliation | Rodríguez-Kessler, P.L., Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Apdo. Postal 73, Cordemex, Mérida, Yucatán, Mexico | spa |
dc.contributor.affiliation | Pan, S., Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Apdo. Postal 73, Cordemex, Mérida, Yucatán, Mexico | spa |
dc.contributor.affiliation | Florez, E., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia | spa |
dc.contributor.affiliation | Cabellos, J.L., Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Apdo. Postal 73, Cordemex, Mérida, Yucatán, Mexico | spa |
dc.contributor.affiliation | Merino, G., Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Apdo. Postal 73, Cordemex, Mérida, Yucatán, Mexico | spa |
dc.identifier.doi | 10.1021/acs.jpcc.7b05048 | |
dc.subject.keyword | Adsorption | eng |
dc.subject.keyword | Binary alloys | eng |
dc.subject.keyword | Density functional theory | eng |
dc.subject.keyword | Electronic properties | eng |
dc.subject.keyword | Isomers | eng |
dc.subject.keyword | Rhodium | eng |
dc.subject.keyword | Adsorption of no | eng |
dc.subject.keyword | Adsorption site | eng |
dc.subject.keyword | Growth algorithms | eng |
dc.subject.keyword | Lowest energy structure | eng |
dc.subject.keyword | Silver cluster | eng |
dc.subject.keyword | Size-dependent reactivity | eng |
dc.subject.keyword | Stable isomers | eng |
dc.subject.keyword | Structural evolution | eng |
dc.subject.keyword | Rhodium alloys | eng |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.abstract | Structural properties of AgnRh (n ≤ 15) clusters are investigated using a successive growth algorithm coupled with density functional theory computations. The structures of the clusters are revisited, including a detailed discussion of their electronic properties. In contrast to these previous contributions, the lowest energy structures of the clusters are planar for n = 3-6, while three-dimensional for n = 7 onward. Our present searches identify new lowest energy structures for n = 3-6 and 9-13. The most stable isomers are selected to study the adsorption of NO. The size-dependent reactivity of the clusters indicates that Rh atom acts as a more effective adsorption site for NO than Ag. Since the transition from Rh-exposed to Rh-encapsulated structures occurs at n = 9, the reactivity toward NO for AgnRh clusters with n ≤ 8 is considerably higher than that for the larger homologues. Further, the results show that doping Agn clusters with Rh increases the reactivity toward NO adsorption. © 2017 American Chemical Society. | eng |
dc.creator.affiliation | Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Apdo. Postal 73, Cordemex, Mérida, Yucatán, Mexico | spa |
dc.creator.affiliation | Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia | spa |
dc.relation.ispartofes | Journal of Physical Chemistry C | spa |
dc.relation.ispartofes | Journal of Physical Chemistry C Volume 121, Issue 35, 7 September 2017, Pages 19420-19427 | spa |
dc.relation.references | Adamo, C., & Barone, V. (1999). Toward reliable density functional methods without adjustable parameters: The PBE0 model. Journal of Chemical Physics, 110(13), 6158-6170. | spa |
dc.relation.references | Bandyopadhyay, D., & Sen, P. (2010). Density functional investigation of structure and stability of ge n and GenNi (n = 1-20) clusters: Validity of the electron counting rule. Journal of Physical Chemistry A, 114(4), 1835-1842. doi:10.1021/jp905561n | spa |
dc.relation.references | Becerril, D., & Noguez, C. (2015). Adsorption of a methylthio radical on silver nanoparticles: Size dependence. Journal of Physical Chemistry C, 119(20), 10824-10835. doi:10.1021/jp509727q | spa |
dc.relation.references | Bernhardt, T. M., Socaciu-Siebert, L. D., Hagen, J., & Wöste, L. (2005). Size and composition dependence in CO oxidation reaction on small free gold, silver, and binary silver-gold cluster anions. Applied Catalysis A: General, 291(1-2), 170-178. doi:10.1016/j.apcata.2005.02.041 | spa |
dc.relation.references | Chen, M., Dyer, J. E., Li, K., & Dixon, D. A. (2013). Prediction of structures and atomization energies of small silver clusters, (ag)n, n < 100. Journal of Physical Chemistry A, 117(34), 8298-8313. doi:10.1021/jp404493w | spa |
dc.relation.references | Dong, R., Chen, X., Zhao, H., Wang, X., Shu, H., Ding, Z., & Wei, L. (2011). Structural, electronic and magnetic properties of AgnFe clusters (n ≤ 15): Local magnetic moment interacting with delocalized electrons. Journal of Physics B: Atomic, Molecular and Optical Physics, 44(3) doi:10.1088/0953-4075/44/3/035102 | spa |
dc.relation.references | Duarte, H. A., & Salahub, D. R. (1999). NO adsorption on pd clusters. A density functional study. Topics in Catalysis, 9(3-4), 123-133. | spa |
dc.relation.references | Fournier, R. (2001). Theoretical study of the structure of silver clusters. Journal of Chemical Physics, 115(5), 2165-2177. doi:10.1063/1.1383288 | spa |
dc.relation.references | Frisch, M. J. (2009). Gaussian 09. | spa |
dc.relation.references | Gong, X., Ju, W., Li, T., Feng, Z., & Wang, Y. (2015). Spin–orbit splitting and magnetism of icosahedral M@Ag12 clusters (M = 3d and 4d atoms). Journal of Cluster Science, 26(3), 759-773. doi:10.1007/s10876-014-0737-x | spa |
dc.relation.references | Grönbeck, H., Hellman, A., & Gavrin, A. (2007). Structural, energetic, and vibrational properties of NOx adsorption on agn, n = 1-8. Journal of Physical Chemistry A, 111(27), 6062-6067. doi:10.1021/jp071117d | spa |
dc.relation.references | Gutsev, G. L., Mochena, M. D., Johnson, E., & Bauschlicher Jr., C. W. (2006). Dissociative and associative attachment of NO to iron clusters. Journal of Chemical Physics, 125(19) doi:10.1063/1.2378831 | spa |
dc.relation.references | Harb, M., Rabilloud, F., Simon, D., Rydlo, A., Lecoultre, S., Conus, F., . . . Félix, C. (2008). Optical absorption of small silver clusters: Agn, (n=4-22). Journal of Chemical Physics, 129(19) doi:10.1063/1.3013557 | spa |
dc.relation.references | Harding, D., Mackenzie, S. R., & Walsh, T. R. (2006). Structural isomers and reactivity for Rh6 and rhe 6+. Journal of Physical Chemistry B, 110(37), 18272-18277. doi:10.1021/jp062603o | spa |
dc.relation.references | Hirabayashi, S., & Ichihashi, M. (2016). Reactions of ti- and V-doped cu cluster cations with nitric oxide and oxygen: Size dependence and preferential NO adsorption. Journal of Physical Chemistry A, 120(10), 1637-1643. doi:10.1021/acs.jpca.6b00206 | spa |
dc.relation.references | Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical Review, 136(3B), B864-B871. doi:10.1103/PhysRev.136.B864 | spa |
dc.relation.references | Itoh, M., Kumar, V., Adschiri, T., & Kawazoe, Y. (2009). Comprehensive study of sodium, copper, and silver clusters over a wide range of sizes 2≤N≤75. Journal of Chemical Physics, 131(17) doi:10.1063/1.3187934 | spa |
dc.relation.references | Jackschath, C., Rabin, I., & Schulze, W. (1992). Electron impact ionization of silver clusters agn, n≦36. Zeitschrift Für Physik D Atoms, Molecules and Clusters, 22(2), 517-520. doi:10.1007/BF01426093 | spa |
dc.relation.references | Janssens, E., Neukermans, S., Nguyen, H. M. T., Nguyen, M. T., & Lievens, P. (2005). Quenching of the magnetic moment of a transition metal dopant in silver clusters. Physical Review Letters, 94(11) doi:10.1103/PhysRevLett.94.113401 | spa |
dc.relation.references | Janssens, E., Neukermans, S., Wang, X., Veldeman, N., Silverans, R. E., & Lievens, P. (2005). Stability patterns of transition metal doped silver clusters: Dopant- and size-dependent electron delocalization.European Physical Journal D, 34(1-3), 23-27. doi:10.1140/epjd/e2005-00106-9 | spa |
dc.relation.references | Jensen, W. B. (2005). The origin of the 18-electron rule. Journal of Chemical Education, 82(1), 28. | spa |
dc.relation.references | Jin, Y., Maroulis, G., Kuang, X., Ding, L., Lu, C., Wang, J., . . . Ju, M. (2015). Geometries, stabilities and fragmental channels of neutral and charged sulfur clusters: SnQ (n = 3-20, Q = 0, ±1). Physical Chemistry Chemical Physics, 17(20), 13590-13597. doi:10.1039/c5cp00728c | spa |
dc.relation.references | Jin, Y., Tian, Y., Kuang, X., Zhang, C., Lu, C., Wang, J., . . . Ju, M. (2015). Ab initio search for global minimum structures of pure and boron doped silver clusters. Journal of Physical Chemistry A, 119(25), 6738-6745. doi:10.1021/acs.jpca.5b03542 | spa |
dc.relation.references | Kohaut, S., & Springborg, M. (2016). Structural, energetic, and magnetic properties of agn-mRhm and agm rhn-m clusters with n ≤ 20 and m = 0,1. Journal of Cluster Science, 27(3), 913-933. doi:10.1007/s10876-016-1003-1 | spa |
dc.relation.references | Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140(4A), A1133-A1138. doi:10.1103/PhysRev.140.A1133 | spa |
dc.relation.references | Kotsifa, A., Halkides, T. I., Kondarides, D. I., & Verykios, X. E. (2002). Activity enhancement of bimetallic rh-Ag/Al2O3 catalysts for selective catalytic reduction of NO by C3H6. Catalysis Letters, 79(1-4), 113-117. doi:10.1023/A:1015308408840 | spa |
dc.relation.references | Koyasu, K., Akutsu, M., Mitsui, M., & Nakajima, A. (2005). Selective formation of MSi16 (M = sc, ti, and V). Journal of the American Chemical Society, 127(14), 4998-4999. doi:10.1021/ja045380t | spa |
dc.relation.references | Li, Y., Lyon, J. T., Woodham, A. P., Fielicke, A., & Janssens, E. (2014). The geometric structure of silver-doped silicon clusters. ChemPhysChem, 15(2), 328-336. doi:10.1002/cphc.201300944 | spa |
dc.relation.references | Liu, X., Tian, D., Ren, S., & Meng, C. (2015). Structure sensitivity of NO adsorption-dissociation on pdn (n = 8, 13, 19, 25) clusters. Journal of Physical Chemistry C, 119(23), 12941-12948. doi:10.1021/acs.jpcc.5b01141 | spa |
dc.relation.references | Matulis, V. E., & Ivaskevich, O. A. (2006). Comparative DFT study of electronic structure and geometry of copper and silver clusters: Interaction with NO molecule. Computational Materials Science, 35(3), 268-271. doi:10.1016/j.commatsci.2004.08.011 | spa |
dc.relation.references | Mokkath, J. H., & Schwingenschlögl, U. (2014). Structural and optical properties of si-doped ag clusters. Journal of Physical Chemistry C, 118(9), 4885-4889. doi:10.1021/jp4112958 | spa |
dc.relation.references | Nhat, P. V., & Nguyen, M. T. (2011). Trends in structural, electronic and energetic properties of bimetallic vanadium-gold clusters AunV with n = 1-14. Physical Chemistry Chemical Physics, 13(36), 16254-16264. doi:10.1039/c1cp22078k | spa |
dc.relation.references | Nhat, P. V., & Nguyen, M. T. (2011). Trends in structural, electronic and energetic properties of bimetallic vanadium-gold clusters AunV with n = 1-14. Physical Chemistry Chemical Physics, 13(36), 16254-16264. doi:10.1039/c1cp22078k | spa |
dc.relation.references | Pereiro, M., & Baldomir, D. (2007). Structure of small silver clusters and static response to an external electric field. Physical Review A - Atomic, Molecular, and Optical Physics, 75(3) doi:10.1103/PhysRevA.75.033202 | spa |
dc.relation.references | Peyser, L. A., Vinson, A. E., Bartko, A. P., & Dickson, R. M. (2001). Photoactivated fluorescence from individual silver nanoclusters. Science, 291(5501), 103-106. doi:10.1126/science.291.5501.103 | spa |
dc.relation.references | Piotrowski, M. J., Piquini, P., Zeng, Z., & Da Silva, J. L. F. (2012). Adsorption of NO on the rh 13, pd 13, ir 13, and pt 13 clusters: A density functional theory investigation. Journal of Physical Chemistry C, 116(38), 20540-20549. doi:10.1021/jp303167b | spa |
dc.relation.references | Ran, Q., Schmude Jr., R. W., Gingerich, K. A., Wilhite, D. W., & Kingcade Jr., J. E. (1993). Dissociation energy and enthalpy of formation of gaseous silver dimer. Journal of Physical Chemistry, 97(32), 8535-8540. | spa |
dc.relation.references | Rao, B. K., & Jena, P. (1999). Evolution of the electronic structure and properties of neutral and charged aluminum clusters: A comprehensive analysis. Journal of Chemical Physics, 111(5), 1890-1904. | spa |
dc.relation.references | Rodríguez-Kessler, P. L., & Rodríguez-Domínguez, A. R. (2015). Stability of ni clusters and the adsorption of CH4: First-principles calculations. Journal of Physical Chemistry C, 119(22), 12378-12384. doi:10.1021/acs.jpcc.5b01738 | spa |
dc.relation.references | Rodríguez-Kessler, P. L., & Rodríguez-Domínguez, A. R. (2015). Structural, electronic, and magnetic properties of AgnCo (n=1-9) clusters: A first-principles study. Computational and Theoretical Chemistry, 1066, 55-61. doi:10.1016/j.comptc.2015.05.009 | spa |
dc.relation.references | Rodríguez-Kessler, P. L., & Rodríguez-Domínguez, A. R. (2016). Structures and electronic properties of TinV (n = 1-16) clusters: First-principles calculations. Journal of Physical Chemistry A, 120(15), 2401-2407. doi:10.1021/acs.jpca.6b00224 | spa |
dc.relation.references | Romo-Ávila, S. L., & Guirado-López, R. A. (2012). Adsorption of nitric oxide on small rh n± clusters: Role of the local atomic environment on the dissociation of the N-O bond. Journal of Physical Chemistry A, 116(3), 1059-1068. doi:10.1021/jp208847r | spa |
dc.relation.references | Sazama, P., Čapek, L., Drobná, H., Sobalík, Z., Dědeček, J., Arve, K., & Wichterlová, B. (2005). Enhancement of decane-SCR-NOx over Ag/alumina by hydrogen. reaction kinetics and in situ FTIR and UV-vis study. Journal of Catalysis, 232(2), 302-317. doi:10.1016/j.jcat.2005.03.013 | spa |
dc.relation.references | Shimizu, K. -., Sugino, K., Sawabe, K., & Satsuma, A. (2009). Oxidant-free dehydrogenation of alcohols heterogeneously catalyzed by cooperation of silver clusters and acid-base sites on alumina. Chemistry - A European Journal, 15(10), 2341-2351. doi:10.1002/chem.200802222 | spa |
dc.relation.references | Simard, B., Hackett, P. A., James, A. M., & Langridge-Smith, P. R. R. (1991). The bond length of silver dimer. Chemical Physics Letters, 186(4-5), 415-422. doi:10.1016/0009-2614(91)90201-J | spa |
dc.relation.references | Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., & Sánchez-Portal, D. (2002). The SIESTA method for ab initio order-N materials simulation. Journal of Physics Condensed Matter, 14(11), 2745-2779. doi:10.1088/0953-8984/14/11/302 | spa |
dc.relation.references | Sun, W. G., Wang, J. J., Lu, C., Xia, X. X., Kuang, X. Y., & Hermann, A. (2017). Evolution of the structural and electronic properties of medium-sized sodium clusters: A honeycomb-like Na20 cluster. Inorganic Chemistry, 56(3), 1241-1248. doi:10.1021/acs.inorgchem.6b02340 | spa |
dc.relation.references | Tian, D., Zhang, H., & Zhao, J. (2007). Structure and structural evolution of agn (n = 3 - 22) clusters using a genetic algorithm and density functional theory method. Solid State Communications, 144(3-4), 174-179. doi:10.1016/j.ssc.2007.05.020 | spa |
dc.relation.references | Torres, M. B., Aguilera-Granja, F., Balbás, L. C., & Vega, A. (2011). Ab initio study of the adsorption of NO on the rh 6 + cluster. Journal of Physical Chemistry A, 115(30), 8350-8360. doi:10.1021/jp202511w | spa |
dc.relation.references | Wang, Y., George, T. F., Lindsay, D. M., & Beri, A. C. (1987). The hückel model for small metal clusters. I. geometry, stability, and relationship to graph theory. The Journal of Chemical Physics, 86(6), 3493-3499. | spa |
dc.relation.references | Weigend, F., & Ahlrichs, R. (2005). Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics, 7(18), 3297-3305. doi:10.1039/b508541a | spa |
dc.relation.references | Xia, X., Kuang, X., Lu, C., Jin, Y., Xing, X., Merino, G., & Hermann, A. (2016). Deciphering the structural evolution and electronic properties of magnesium clusters: An aromatic homonuclear metal Mg17 cluster. Journal of Physical Chemistry A, 120(40), 7947-7954. doi:10.1021/acs.jpca.6b07322 | spa |
dc.relation.references | Yang, M., Jackson, K. A., & Jellinek, J. (2006). First-principles study of intermediate size silver clusters: Shape evolution and its impact on cluster properties. Journal of Chemical Physics, 125(14) doi:10.1063/1.2351818 | spa |
dc.relation.references | Zhang, M., Gu, X. -., Zhang, W. -., Zhao, L. -., He, L. -., & Luo, Y. -. (2010). Probing the magnetic and structural properties of the 3d, 4d, 5d impurities encapsulated in an icosahedral Ag12 cage. Physica B: Condensed Matter, 405(2), 642-648. doi:10.1016/j.physb.2009.09.080 | spa |
dc.relation.references | Zhang, W., Yan, S. -., Zhao, Z. -., & Zhang, H. -. (2012). Stabilities and fragmentation behaviors of ag nclusters(n = 234). Journal of Theoretical and Computational Chemistry, 11(5), 953-964. doi:10.1142/S0219633612500642 | spa |
dc.relation.references | Zibordi-Besse, L., Tereshchuk, P., Chaves, A. S., & Da Silva, J. L. F. (2016). Ethanol and water adsorption on transition-metal 13-atom clusters: A density functional theory investigation within van der waals corrections. Journal of Physical Chemistry A, 120(24), 4231-4240. doi:10.1021/acs.jpca.6b03467 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | spa |
dc.identifier.instname | instname:Universidad de Medellín | spa |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Indexados Scopus [1813]