Mostrar el registro sencillo del ítem

dc.creatorCaro M.A.spa
dc.creatorLopez-Acevedo O.spa
dc.creatorLaurila T.spa
dc.date.accessioned2017-12-19T19:36:41Z
dc.date.available2017-12-19T19:36:41Z
dc.date.created2017
dc.identifier.issn15499618
dc.identifier.urihttp://hdl.handle.net/11407/4253
dc.description.abstractWe present a complete methodology to consistently estimate redox potentials strictly from first-principles, without any experimental input. The methodology is based on (i) ab initio molecular dynamics (MD) simulations, (ii) all-atom explicit solvation, (iii) the two-phase thermodynamic (2PT) model, and (iv) the use of electrostatic potentials as references for the absolute electrochemical scale. We apply the approach presented to compute reduction potentials of the following redox couples: Cr2+/3+, V2+/3+, Ru(NH3)62+/3+, Sn2+/4+, Cu1+/2+, FcMeOH0/1+, and Fe2+/3+ (in aqueous solution) and Fc0/1+ (in acetonitrile). We argue that fully quantum-mechanical simulations are required to correctly model the intricate dynamical effects of the charged complexes on the surrounding solvent molecules within the solvation shell. Using the proposed methodology allows for a computationally efficient and statistically stable approach to compute free energy differences, yielding excellent agreement between our computed redox potentials and the experimental references. The root-mean-square deviation with respect to experiment for the aqueous test set and the two exchange-correlation density functionals used, PBE and PBE with van der Waals corrections, are 0.659 and 0.457 V, respectively. At this level of theory, depending on the functional employed, its ability to correctly describe each particular molecular complex seems to be the factor limiting the accuracy of the calculations. © 2017 American Chemical Society.eng
dc.language.isoeng
dc.publisherAmerican Chemical Societyspa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85027228601&doi=10.1021%2facs.jctc.7b00314&partnerID=40&md5=e934b462e00f989f9f4e16ce4500392cspa
dc.sourceScopusspa
dc.titleRedox Potentials from Ab Initio Molecular Dynamics and Explicit Entropy Calculations: Application to Transition Metals in Aqueous Solutionspa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.contributor.affiliationCaro, M.A., Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland, COMP Centre of Excellence in Computational Nanoscience, Department of Applied Physics, Aalto University, Espoo, Finlandspa
dc.contributor.affiliationLopez-Acevedo, O., COMP Centre of Excellence in Computational Nanoscience, Department of Applied Physics, Aalto University, Espoo, Finland, Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiaspa
dc.contributor.affiliationLaurila, T., Department of Electrical Engineering and Automation, Aalto University, Espoo, Finlandspa
dc.identifier.doi10.1021/acs.jctc.7b00314
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.abstractWe present a complete methodology to consistently estimate redox potentials strictly from first-principles, without any experimental input. The methodology is based on (i) ab initio molecular dynamics (MD) simulations, (ii) all-atom explicit solvation, (iii) the two-phase thermodynamic (2PT) model, and (iv) the use of electrostatic potentials as references for the absolute electrochemical scale. We apply the approach presented to compute reduction potentials of the following redox couples: Cr2+/3+, V2+/3+, Ru(NH3)62+/3+, Sn2+/4+, Cu1+/2+, FcMeOH0/1+, and Fe2+/3+ (in aqueous solution) and Fc0/1+ (in acetonitrile). We argue that fully quantum-mechanical simulations are required to correctly model the intricate dynamical effects of the charged complexes on the surrounding solvent molecules within the solvation shell. Using the proposed methodology allows for a computationally efficient and statistically stable approach to compute free energy differences, yielding excellent agreement between our computed redox potentials and the experimental references. The root-mean-square deviation with respect to experiment for the aqueous test set and the two exchange-correlation density functionals used, PBE and PBE with van der Waals corrections, are 0.659 and 0.457 V, respectively. At this level of theory, depending on the functional employed, its ability to correctly describe each particular molecular complex seems to be the factor limiting the accuracy of the calculations. © 2017 American Chemical Society.eng
dc.creator.affiliationDepartment of Electrical Engineering and Automation, Aalto University, Espoo, Finlandspa
dc.creator.affiliationCOMP Centre of Excellence in Computational Nanoscience, Department of Applied Physics, Aalto University, Espoo, Finlandspa
dc.creator.affiliationDepartamento de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiaspa
dc.relation.ispartofesJournal of Chemical Theory and Computationspa
dc.relation.ispartofesJournal of Chemical Theory and Computation Volume 13, Issue 8, 8 August 2017, Pages 3432-3441spa
dc.relation.referencesAarva, A., Laurila, T., & Caro, M. A. (2017). Doping as a means to probe the potential dependence of dopamine adsorption on carbon-based surfaces: A first-principles study. Journal of Chemical Physics, 146(23) doi:10.1063/1.4986521spa
dc.relation.referencesBard, A. J., & Faulkner, L. R. (1980). Electrochemical Methods: Fundamentals and Applications.spa
dc.relation.referencesBerens, P. H., Mackay, D. H. J., White, G. M., & Wilson, K. R. (1983). Thermodynamics and quantum corrections from molecular dynamics for liquid water. The Journal of Chemical Physics, 79(5), 2375-2389.spa
dc.relation.referencesBlöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/PhysRevB.50.17953spa
dc.relation.referencesCannes, C., Kanoufi, F., & Bard, A. J. (2003). Cyclic voltammetry and scanning electrochemical microscopy of ferrocenemethanol at monolayer and bilayer-modified gold electrodes. Journal of Electroanalytical Chemistry, 547(1), 83-91. doi:10.1016/S0022-0728(03)00192-Xspa
dc.relation.referencesCaro, M. A. (2017). Solvation shells and radial distribution functions of transition metal complexes in aqueous solution: Results from ab initio molecular dynamics. Zenodo.spa
dc.relation.referencesCaro, M. A., Laurila, T., & Lopez-Acevedo, O. (2016). Accurate schemes for calculation of thermodynamic properties of liquid mixtures from molecular dynamics simulations. Journal of Chemical Physics, 145(24) doi:10.1063/1.4973001spa
dc.relation.referencesCaro, M. A., Määttä, J., Lopez-Acevedo, O., & Laurila, T. (2015). Energy band alignment and electronic states of amorphous carbon surfaces in vacuo and in aqueous environment. Journal of Applied Physics, 117(3) doi:10.1063/1.4905915spa
dc.relation.referencesCheng, J., Liu, X., VandeVondele, J., Sulpizi, M., & Sprik, M. (2014). Redox potentials and acidity constants from density functional theory based molecular dynamics. Accounts of Chemical Research, 47(12), 3522-3529. doi:10.1021/ar500268yspa
dc.relation.referencesChrist, C. D., Mark, A. E., & Van Gunsteren, W. F. (2010). Basic ingredients of free energy calculations: A review. Journal of Computational Chemistry, 31(8), 1569-1582. doi:10.1002/jcc.21450spa
dc.relation.referencesDudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J., & Sutton, A. P. (1998). Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Physical Review B - Condensed Matter and Materials Physics, 57(3), 1505-1509.spa
dc.relation.referencesGagne, R. R., Koval, C. A., & Lisensky, G. C. (1980). Ferrocene as an internal standard for electrochemical measurements. Inorganic Chemistry, 19(9), 2854-2855. doi:10.1021/ic50211a080spa
dc.relation.referencesGillan, M. J., Alfè, D., & Michaelides, A. (2016). Perspective: How good is DFT for water? Journal of Chemical Physics, 144(13) doi:10.1063/1.4944633spa
dc.relation.referencesHeyd, J., Scuseria, G. E., & Ernzerhof, M. (2003). Hybrid functionals based on a screened coulomb potential. Journal of Chemical Physics, 118(18), 8207-8215. doi:10.1063/1.1564060spa
dc.relation.referencesHolmberg, N., & Laasonen, K. (2015). Ab initio electrochemistry: Exploring the hydrogen evolution reaction on carbon nanotubes. Journal of Physical Chemistry C, 119(28), 16166-16178. doi:10.1021/acs.jpcc.5b04739spa
dc.relation.referencesHoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 31(3), 1695-1697. doi:10.1103/PhysRevA.31.1695spa
dc.relation.referencesHouse, C. I., & Kelsall, G. H. (1984). Potential-pH diagrams for the Sn/H2OCl system. Electrochimica Acta, 29(10), 1459-1464. doi:10.1016/0013-4686(84)87028-0spa
dc.relation.referencesJorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926-935.spa
dc.relation.referencesKresse, G., & Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B - Condensed Matter and Materials Physics, 54(16), 11169-11186.spa
dc.relation.referencesKresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B - Condensed Matter and Materials Physics, 59(3), 1758-1775.spa
dc.relation.referencesLai, P. -., Hsieh, C. -., & Lin, S. -. (2012). Rapid determination of entropy and free energy of mixtures from molecular dynamics simulations with the two-phase thermodynamic model. Physical Chemistry Chemical Physics, 14(43), 15206-15213. doi:10.1039/c2cp42011bspa
dc.relation.referencesLee, C., Yang, W., & Parr, R. G. (1988). Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. doi:10.1103/PhysRevB.37.785spa
dc.relation.referencesLin, S. -., Blanco, M., & Goddard III, W. A. (2003). The two-phase model for calculating thermodynamic properties of liquids from molecular dynamics: Validation for the phase diagram of lennard-jones fluids.Journal of Chemical Physics, 119(22), 11792-11805. doi:10.1063/1.1624057spa
dc.relation.referencesLin, S. -., Maiti, P. K., & Goddard III, W. A. (2010). Two-phase thermodynamic model for efficient and accurate absolute entropy of water from molecular dynamics simulations. Journal of Physical Chemistry B, 114(24), 8191-8198. doi:10.1021/jp103120qspa
dc.relation.referencesLindahl, E., Bjelkmar, P., Larsson, P., Cuendet, M. A., & Hess, B. (2010). Implementation of the charmm force field in GROMACS: Analysis of protein stability effects from correction maps, virtual interaction sites, and water models. Journal of Chemical Theory and Computation, 6(2), 459-466. doi:10.1021/ct900549rspa
dc.relation.referencesLucking, M., Sun, Y. -., West, D., & Zhang, S. (2014). Absolute redox potential of liquid water: A first-principles theory. Chemical Science, 5(3), 1216-1220. doi:10.1039/c3sc52287cspa
dc.relation.referencesMakov, G., & Payne, M. C. (1995). Periodic boundary conditions in ab initio calculations. Physical Review B, 51(7), 4014-4022. doi:10.1103/PhysRevB.51.4014spa
dc.relation.referencesNosé, S. (1984). A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics, 81(1), 511-519.spa
dc.relation.referencesPascal, T. A., & Goddard, W. A. (2012). Hydrophobic segregation, phase transitions and the anomalous thermodynamics of water/methanol mixtures. Journal of Physical Chemistry B, 116(47), 13905-13912. doi:10.1021/jp309693dspa
dc.relation.referencesPavlishchuk, V. V., & Addison, A. W. (2000). Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C. Inorganica Chimica Acta, 298(1), 97-102. doi:10.1016/S0020-1693(99)00407-7spa
dc.relation.referencesPerdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/PhysRevLett.77.3865spa
dc.relation.referencesPost, K., & Robins, R. G. (1976). Thermodynamic diagrams for the vanadium-water system at 298·15K. Electrochimica Acta, 21(6), 401-405. doi:10.1016/0013-4686(76)85115-8spa
dc.relation.referencesRossmeisl, J., Nørskov, J. K., Taylor, C. D., Janik, M. J., & Neurock, M. (2006). Calculated phase diagrams for the electrochemical oxidation and reduction of water over pt(111). Journal of Physical Chemistry B, 110(43), 21833-21839. doi:10.1021/jp0631735spa
dc.relation.referencesRossmeisl, J., Skúlason, E., Björketun, M. E., Tripkovic, V., & Nørskov, J. K. (2008). Modeling the electrified solid-liquid interface. Chemical Physics Letters, 466(1-3), 68-71. doi:10.1016/j.cplett.2008.10.024spa
dc.relation.referencesRusnak, A. J., Pinnick, E. R., Calderon, C. E., & Wang, F. (2012). Static dielectric constants and molecular dipole distributions of liquid water and ice-ih investigated by the PAW-PBE exchange-correlation functional. Journal of Chemical Physics, 137(3) doi:10.1063/1.4734594spa
dc.relation.referencesSkúlason, E., Karlberg, G. S., Rossmeisl, J., Bligaard, T., Greeley, J., Jónsson, H., & Nørskov, J. K. (2007). Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the pt(111) electrode. Physical Chemistry Chemical Physics, 9(25), 3241-3250. doi:10.1039/b700099espa
dc.relation.referencesStradi, D., Martinez, U., Blom, A., Brandbyge, M., & Stokbro, K. (2016). General atomistic approach for modeling metal-semiconductor interfaces using density functional theory and nonequilibrium green's function. Physical Review B, 93(15) doi:10.1103/PhysRevB.93.155302spa
dc.relation.referencesTkatchenko, A., & Scheffler, M. (2009). Accurate molecular van der waals interactions from ground-state electron density and free-atom reference data. Physical Review Letters, 102(7) doi:10.1103/PhysRevLett.102.073005spa
dc.relation.referencesTrasa'tti, S. (1986). The absolute electrode potential: An explanatory note (recommendations 1986). Pure and Applied Chemistry, 58(7), 955-966. doi:10.1351/pac198658070955spa
dc.relation.referencesTsierkezos, N. G. (2007). Cyclic voltammetric studies of ferrocene in nonaqueous solvents in the temperature range from 248.15 to 298.15 K. Journal of Solution Chemistry, 36(3), 289-302. doi:10.1007/s10953-006-9119-9spa
dc.relation.referencesTsierkezos, N. G., & Ritter, U. (2010). Electrochemical impedance spectroscopy and cyclic voltammetry of ferrocene in acetonitrile/acetone system. Journal of Applied Electrochemistry, 40(2), 409-417. doi:10.1007/s10800-009-0011-3spa
dc.relation.referencesVan De Walle, C. G., & Martin, R. M. (1986). Theoretical calculations of heterojunction discontinuities in the Si/Ge system. Physical Review B, 34(8), 5621-5634. doi:10.1103/PhysRevB.34.5621spa
dc.relation.referencesVan Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701-1718. doi:10.1002/jcc.20291spa
dc.relation.referencesWang, L. -., & Van Voorhis, T. (2012). A polarizable QM/MM explicit solvent model for computational electrochemistry in water. Journal of Chemical Theory and Computation, 8(2), 610-617. doi:10.1021/ct200340xspa
dc.relation.referencesWang, Y., Rogers, E. I., & Compton, R. G. (2010). The measurement of the diffusion coefficients of ferrocene and ferrocenium and their temperature dependence in acetonitrile using double potential step microdisk electrode chronoamperometry. Journal of Electroanalytical Chemistry, 648(1), 15-19. doi:10.1016/j.jelechem.2010.07.006spa
dc.relation.referencesWu, Y., Chan, M. K. Y., & Ceder, G. (2011). Prediction of semiconductor band edge positions in aqueous environments from first principles. Physical Review B - Condensed Matter and Materials Physics, 83(23) doi:10.1103/PhysRevB.83.235301spa
dc.relation.referencesZhang, C., Spanu, L., & Galli, G. (2011). Entropy of liquid water from ab initio molecular dynamics. Journal of Physical Chemistry B, 115(48), 14190-14195. doi:10.1021/jp204981yspa
dc.relation.referencesZhang, S. B., Tománek, D., Louie, S. G., Cohen, M. L., & Hybertsen, M. S. (1988). Quasiparticle calculation of valence band offset of AlAs-GaAs(001). Solid State Communications, 66(6), 585-588. doi:10.1016/0038-1098(88)90213-Xspa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem