Show simple item record

Preparação de carvão ativado a partir da resíduos de palmeira de óleo e sua aplicação para a remoção de corantes;
Preparación de carbón activado a partir de residuos de palma de aceite y su aplicación para la remoción de colorantes

dc.creatorRamírez A.P.spa
dc.creatorGiraldo S.spa
dc.creatorFlórez E.spa
dc.creatorAcelas N.spa
dc.date.accessioned2017-12-19T19:36:41Z
dc.date.available2017-12-19T19:36:41Z
dc.date.created2017spa
dc.identifier.issn1202804spa
dc.identifier.urihttp://hdl.handle.net/11407/4254
dc.description.abstractThe production of activated carbon from residual biomass generated in the production of oil palm, fiber (F) and shell (C) was studied. The chemical activation was done using ZnCl2 and the adsorption capacity of methylene blue (AM) at different concentrations (50, 100, and 150 mg/L) was evaluated. Results showed a good development of pore with surface areas of 835.3 m2/g for activated fiber (FA) and 575.1 m2/g for activated shell (CA). A good fit of the experimental data with the pseudo second order kinetic model and with Langmuir and Freundlich isotherms models was found. In addition, maximum adsorption capacities of 763.4 and 724.6 mg/g for FA and CA were found, respectively. © 2017, Universidad Nacional de Colombia. All rights reserved.eng
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85026876660&partnerID=40&md5=8b0bce6cb877b05420a3dc4fc9751667spa
dc.sourceScopusspa
dc.sourcereponame:Repositorio Institucionalspa
dc.sourceinstname:Universidad de Medellínspa
dc.titlePreparation of activated carbon from palm oil wastes and their application for methylene blue removalspa
dc.titlePreparação de carvão ativado a partir da resíduos de palmeira de óleo e sua aplicação para a remoção de corantesspa
dc.titlePreparación de carbón activado a partir de residuos de palma de aceite y su aplicación para la remoción de colorantesspa
dc.typeArticlespa
dc.typeinfo:eu-repo/semantics/publishedVersionspa
dc.typeinfo:eu-repo/semantics/articlespa
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccessspa
dc.contributor.affiliationRamírez, A.P., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, Colombiaspa
dc.contributor.affiliationGiraldo, S., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, Colombiaspa
dc.contributor.affiliationFlórez, E., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, Colombiaspa
dc.contributor.affiliationAcelas, N., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, Colombiaspa
dc.subject.keywordActivated carboneng
dc.subject.keywordAdsorptioneng
dc.subject.keywordBiomasseng
dc.subject.keywordChemical activationeng
dc.subject.keywordPalm oileng
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.abstractThe production of activated carbon from residual biomass generated in the production of oil palm, fiber (F) and shell (C) was studied. The chemical activation was done using ZnCl2 and the adsorption capacity of methylene blue (AM) at different concentrations (50, 100, and 150 mg/L) was evaluated. Results showed a good development of pore with surface areas of 835.3 m2/g for activated fiber (FA) and 575.1 m2/g for activated shell (CA). A good fit of the experimental data with the pseudo second order kinetic model and with Langmuir and Freundlich isotherms models was found. In addition, maximum adsorption capacities of 763.4 and 724.6 mg/g for FA and CA were found, respectively. © 2017, Universidad Nacional de Colombia. All rights reserved.eng
dc.source.bibliographicCitationAboua, K. N., Yobouet, Y. A., Yao, K. B., Goné, D. L., & Trokourey, A. (2015). Investigation of dye adsorption onto activated carbon from the shells of macoré fruit. Journal of Environmental Management, 156, 10-14. doi:10.1016/j.jenvman.2015.03.006spa
dc.source.bibliographicCitationAcelas, N. Y., Martin, B. D., López, D., & Jefferson, B. (2015). Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media. Chemosphere, 119, 1353-1360. doi:10.1016/j.chemosphere.2014.02.024spa
dc.source.bibliographicCitationAhmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., . . . Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19-23. doi:10.1016/j.chemosphere.2013.10.071spa
dc.source.bibliographicCitationAhmed, M. J., & Dhedan, S. K. (2012). Equilibrium isotherms and kinetics modeling of methylene blue adsorption on agricultural wastes-based activated carbons. Fluid Phase Equilibria, 317, 9-14. doi:10.1016/j.fluid.2011.12.026spa
dc.source.bibliographicCitationArami-Niya, A., Daud, W. M. A. W., & Mjalli, F. S. (2010). Using granular activated carbon prepared from oil palm shell by ZnCl 2 and physical activation for methane adsorption. Journal of Analytical and Applied Pyrolysis, 89(2), 197-203. doi:10.1016/j.jaap.2010.08.006spa
dc.source.bibliographicCitationBedin, K. C., Martins, A. C., Cazetta, A. L., Pezoti, O., & Almeida, V. C. (2016). KOH-activated carbon prepared from sucrose spherical carbon: Adsorption equilibrium, kinetic and thermodynamic studies for methylene blue removal. Chemical Engineering Journal, 286, 476-484. doi:10.1016/j.cej.2015.10.099spa
dc.source.bibliographicCitationCaturia, F., Molina, F., Molina-Sabio, M., Rodriguez-Reinoso, F., & Esteban, A. (1995). Electroless plating of graphite with copper and nickel. Journal of the Electrochemical Society, 142(12), 4084-4090. doi:10.1149/1.2048468spa
dc.source.bibliographicCitationDuman, G., Onal, Y., Okutucu, C., Onenc, S., & Yanik, J. (2009). Production of activated carbon from pine cone and evaluation of its physical, chemical, and adsorption properties. Energy and Fuels, 23(4), 2197-2204. doi:10.1021/ef800510mspa
dc.source.bibliographicCitationEkrami, E., Dadashian, F., & Arami, M. (2016). Adsorption of methylene blue by waste cotton activated carbon: Equilibrium, kinetics, and thermodynamic studies. Desalination and Water Treatment, 57(15), 7098-7108. doi:10.1080/19443994.2015.1015173spa
dc.source.bibliographicCitationGañán-Gómez, J., Macías-García, A., Díaz-Díez, M. A., González-García, C., & Sabio-Rey, E. (2006). Preparation and characterization of activated carbons from impregnation pitch by ZnCl2. Applied Surface Science, 252(17), 5976-5979. doi:10.1016/j.apsusc.2005.11.011spa
dc.source.bibliographicCitationGarcia-Nunez, J. A., Rodriguez, D. T., Fontanilla, C. A., Ramirez, N. E., Silva Lora, E. E., Frear, C. S., . . . Garcia-Perez, M. (2016). Evaluation of alternatives for the evolution of palm oil mills into biorefineries.Biomass and Bioenergy, 95, 310-329. doi:10.1016/j.biombioe.2016.05.020spa
dc.source.bibliographicCitationHameed, B. H., Ahmad, A. L., & Latiff, K. N. A. (2007). Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust. Dyes and Pigments, 75(1), 143-149. doi:10.1016/j.dyepig.2006.05.039spa
dc.source.bibliographicCitationHamza, U. D., Nasri, N. S., Amin, N. S., Mohammed, J., & Zain, H. M. (2016). Characteristics of oil palm shell biochar and activated carbon prepared at different carbonization times. Desalination and Water Treatment, 57(17), 7999-8006. doi:10.1080/19443994.2015.1042068spa
dc.source.bibliographicCitationIsah, U. A., Abdulraheem, G., Bala, S., Muhammad, S., & Abdullahi, M. (2015). Kinetics, equilibrium and thermodynamics studies of C.I. reactive blue 19 dye adsorption on coconut shell based activated carbon. International Biodeterioration and Biodegradation, 102, 265-273. doi:10.1016/j.ibiod.2015.04.006spa
dc.source.bibliographicCitationIslam, M. A., Benhouria, A., Asif, M., & Hameed, B. H. (2015). Methylene blue adsorption on factory-rejected tea activated carbon prepared by conjunction of hydrothermal carbonization and sodium hydroxide activation processes. Journal of the Taiwan Institute of Chemical Engineers, 52, 57-64. doi:10.1016/j.jtice.2015.02.010spa
dc.source.bibliographicCitationKaraçetin, G., Sivrikaya, S., & Imamoʇlu, M. (2014). Adsorption of methylene blue from aqueous solutions by activated carbon prepared from hazelnut husk using zinc chloride. Journal of Analytical and Applied Pyrolysis, 110(1), 270-276. doi:10.1016/j.jaap.2014.09.006spa
dc.source.bibliographicCitationLua, A. C., & Yang, T. (2005). Characteristics of activated carbon prepared from pistachio-nut shell by zinc chloride activation under nitrogen and vacuum conditions. Journal of Colloid and Interface Science, 290(2), 505-513. doi:10.1016/j.jcis.2005.04.063spa
dc.source.bibliographicCitationLuna, D., Gonzalez, A., Gordon, M., & Martin, N. (2007). Obtenciôn de carbon activado a partir de la cascara de coco. Contactos, 64, 39-48.spa
dc.source.bibliographicCitationMahapatra, K., Ramteke, D. S., & Paliwal, L. J. (2012). Production of activated carbon from sludge of food processing industry under controlled pyrolysis and its application for methylene blue removal. Journal of Analytical and Applied Pyrolysis, 95, 79-86. doi:10.1016/j.jaap.2012.01.009spa
dc.source.bibliographicCitationMohammed, M. A. A., Salmiaton, A., Wan Azlina, W. A. K. G., & Mohamad Amran, M. S. (2012). Gasification of oil palm empty fruit bunches: A characterization and kinetic study. Bioresource Technology, 110, 628-636. doi:10.1016/j.biortech.2012.01.056spa
dc.source.bibliographicCitationMook, W. T., Aroua, M. K., & Szlachta, M. (2016). Palm shell-based activated carbon for removing reactive black 5 dye: Equilibrium and kinetics studies. BioResources, 11(1), 1432-1447. doi:10.15376/biores.11.1.1432-1447spa
dc.source.bibliographicCitationPezoti, O., Cazetta, A. L., Souza, I. P. A. F., Bedin, K. C., Martins, A. C., Silva, T. L., & Almeida, V. C. (2014). Adsorption studies of methylene blue onto ZnCl2-activated carbon produced from buriti shells (mauritia flexuosa L.). Journal of Industrial and Engineering Chemistry, 20(6), 4401-4407. doi:10.1016/j.jiec.2014.02.007spa
dc.source.bibliographicCitationPirsaheb, M., Rezai, Z., Mansouri, A. M., Rastegar, A., Alahabadi, A., Sani, A. R., & Sharafi, K. (2016). Preparation of the activated carbon from india shrub wood and their application for methylene blue removal: Modeling and optimization. Desalination and Water Treatment, 57(13), 5888-5902. doi:10.1080/19443994.2015.1008581spa
dc.source.bibliographicCitationSen Gupta, S., & Bhattacharyya, K. G. (2011). Kinetics of adsorption of metal ions on inorganic materials: A review. Advances in Colloid and Interface Science, 162(1-2), 39-58. doi:10.1016/j.cis.2010.12.004spa
dc.source.bibliographicCitationVargas, A. M. M., Cazetta, A. L., Martins, A. C., Moraes, J. C. G., Garcia, E. E., Gauze, G. F., . . . Almeida, V. C. (2012). Kinetic and equilibrium studies: Adsorption of food dyes acid yellow 6, acid yellow 23, and acid red 18 on activated carbon from flamboyant pods. Chemical Engineering Journal, 181-182, 243-250. doi:10.1016/j.cej.2011.11.073spa
dc.source.bibliographicCitationZhang, Z., Luo, X., Liu, Y., Zhou, P., Ma, G., Lei, Z., & Lei, L. (2015). A low cost and highly efficient adsorbent (activated carbon) prepared from waste potato residue. Journal of the Taiwan Institute of Chemical Engineers, 49, 206-211. doi:10.1016/j.jtice.2014.11.024spa
dc.creator.affiliationDepartamento de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, Colombiaspa
dc.relation.ispartofesRevista Colombiana de Quimicaspa
dc.relation.ispartofesRevista Colombiana de Quimica Volume 46, Issue 1, 1 January 2017, Pages 33-41spa


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record