Mostrar el registro sencillo del ítem

dc.creatorCorrea J.D.spa
dc.creatorOrellana P.A.spa
dc.creatorPacheco M.spa
dc.date.accessioned2017-12-19T19:36:41Z
dc.date.available2017-12-19T19:36:41Z
dc.date.created2017
dc.identifier.issn20794991
dc.identifier.urihttp://hdl.handle.net/11407/4255
dc.description.abstractThe search for new optical materials capable of absorbing light in the frequency range from visible to near infrared is of great importance for applications in optoelectronic devices. In this paper, we report a theoretical study of the electronic and optical properties of hybrid structures composed of fullerenes adsorbed on graphene and on graphene nanoribbons. The calculations are performed in the framework of the density functional theory including the van der Waals dispersive interactions. We found that the adsorption of the C60 fullerenes on a graphene layer does not modify its low energy states, but it has strong consequences for its optical spectrum, introducing new absorption peaks in the visible energy region. The optical absorption of fullerenes and graphene nanoribbon composites shows a strong dependence on photon polarization and geometrical characteristics of the hybrid systems, covering a broad range of energies. We show that an external electric field across the nanoribbon edges can be used to tune different optical transitions coming from nanoribbon–fullerene hybridized states, which yields a very rich electro-absorption spectrum for longitudinally polarized photons. We have carried out a qualitative analysis on the potential of these hybrids as possible donor-acceptor systems in photovoltaic cells. © 2017 by the authors. Licensee MDPI, Basel, Switzerland.eng
dc.language.isoeng
dc.publisherMDPI AGspa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85016153200&doi=10.3390%2fnano7030069&partnerID=40&md5=492556d60a6bfc2eccc1a79b860e0823spa
dc.sourceScopusspa
dc.titleOptoelectronic properties of van der waals hybrid structures: Fullerenes on graphene nanoribbonsspa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.contributor.affiliationCorrea, J.D., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiaspa
dc.contributor.affiliationOrellana, P.A., Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chilespa
dc.contributor.affiliationPacheco, M., Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chilespa
dc.identifier.doi10.3390/nano7030069
dc.subject.keywordFullereneeng
dc.subject.keywordGrapheneeng
dc.subject.keywordNanoribonseng
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.abstractThe search for new optical materials capable of absorbing light in the frequency range from visible to near infrared is of great importance for applications in optoelectronic devices. In this paper, we report a theoretical study of the electronic and optical properties of hybrid structures composed of fullerenes adsorbed on graphene and on graphene nanoribbons. The calculations are performed in the framework of the density functional theory including the van der Waals dispersive interactions. We found that the adsorption of the C60 fullerenes on a graphene layer does not modify its low energy states, but it has strong consequences for its optical spectrum, introducing new absorption peaks in the visible energy region. The optical absorption of fullerenes and graphene nanoribbon composites shows a strong dependence on photon polarization and geometrical characteristics of the hybrid systems, covering a broad range of energies. We show that an external electric field across the nanoribbon edges can be used to tune different optical transitions coming from nanoribbon–fullerene hybridized states, which yields a very rich electro-absorption spectrum for longitudinally polarized photons. We have carried out a qualitative analysis on the potential of these hybrids as possible donor-acceptor systems in photovoltaic cells. © 2017 by the authors. Licensee MDPI, Basel, Switzerland.eng
dc.creator.affiliationDepartamento de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiaspa
dc.creator.affiliationDepartamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chilespa
dc.relation.ispartofesNanomaterialsspa
dc.relation.ispartofesNanomaterials Volume 7, Issue 3, 20 March 2017spa
dc.relation.referencesÅvec, M., Merino, P., Dappe, Y. J., González, C., Abad, E., Jelínek, P., & Martín-Gago, J. A. (2012). Van der waals interactions mediating the cohesion of fullerenes on graphene. Physical Review B - Condensed Matter and Materials Physics, 86(12) doi:10.1103/PhysRevB.86.121407spa
dc.relation.referencesBerland, K., Chakarova-Käck, S. D., Cooper, V. R., Langreth, D. C., & Schröder, E. (2011). A van der waals density functional study of adenine on graphene: Single-molecular adsorption and overlayer binding.Journal of Physics Condensed Matter, 23(13) doi:10.1088/0953-8984/23/13/135001spa
dc.relation.referencesBerland, K., & Hyldgaard, P. (2013). Analysis of van der waals density functional components: Binding and corrugation of benzene and C60 on boron nitride and graphene. Physical Review B - Condensed Matter and Materials Physics, 87(20) doi:10.1103/PhysRevB.87.205421spa
dc.relation.referencesBernardi, M., Lohrman, J., Kumar, P. V., Kirkeminde, A., Ferralis, N., Grossman, J. C., & Ren, S. (2012). Nanocarbon-based photovoltaics. ACS Nano, 6(10), 8896-8903. doi:10.1021/nn302893pspa
dc.relation.referencesBernardi, M., Palummo, M., & Grossman, J. C. (2012). Semiconducting monolayer materials as a tunable platform for excitonic solar cells. ACS Nano, 6(11), 10082-10089. doi:10.1021/nn303815zspa
dc.relation.referencesChang, C. P., Huang, Y. C., Lu, C. L., Ho, J. H., Li, T. S., & Lin, M. F. (2006). Electronic and optical properties of a nanographite ribbon in an electric field. Carbon, 44(3), 508-515. doi:10.1016/j.carbon.2005.08.009spa
dc.relation.referencesChang, H., & Wu, H. (2013). Graphene-based nanomaterials: Synthesis, properties, and optical and optoelectronic applications. Advanced Functional Materials, 23(16), 1984-1997. doi:10.1002/adfm.201202460spa
dc.relation.referencesChung, H. -., Chang, C. -., Lin, C. -., & Lin, M. -. (2016). Electronic and optical properties of graphene nanoribbons in external fields. Physical Chemistry Chemical Physics, 18(11), 7573-7616. doi:10.1039/c5cp06533jspa
dc.relation.referencesDai, L. (2013). Functionalization of graphene for efficient energy conversion and storage. Accounts of Chemical Research, 46(1), 31-42. doi:10.1021/ar300122mspa
dc.relation.referencesDion, M., Rydberg, H., Schröder, E., Langreth, D. C., & Lundqvist, B. I. (2004). Van der waals density functional for general geometries. Physical Review Letters, 92(24), 246401-1-246401-4. doi:10.1103/PhysRevLett.92.246401spa
dc.relation.referencesD'Souza, F., & Ito, O. (2013). Photoinduced electron transfer processes of functionalized nanocarbons; fullerenes, nanotubes and graphene. Science Progress, 96(4), 369-397. doi:10.3184/003685013X13818510064403spa
dc.relation.referencesDubacheva, G. V., Liang, C. -., & Bassani, D. M. (2012). Functional monolayers from carbon nanostructures - fullerenes, carbon nanotubes, and graphene - as novel materials for solar energy conversion.Coordination Chemistry Reviews, 256(21-22), 2628-2639. doi:10.1016/j.ccr.2012.04.007spa
dc.relation.referencesGanesan, V. D., Linghu, J., Zhang, C., Feng, Y. P., & Shen, L. (2016). Heterostructures of phosphorene and transition metal dichalcogenides for excitonic solar cells: A first-principles study. Applied Physics Letters, 108(12) doi:10.1063/1.4944642spa
dc.relation.referencesKim, K., Lee, T. H., Santos, E. J. G., Jo, P. S., Salleo, A., Nishi, Y., & Bao, Z. (2015). Structural and electrical investigation of C60-graphene vertical heterostructures. ACS Nano, 9(6), 5922-5928. doi:10.1021/acsnano.5b00581spa
dc.relation.referencesKleingeld, R., Wang, J., & Lein, M. (2016). Buckminster fullerene adhesion on graphene flakes: Numerical accuracy of dispersion corrected DFT. Polyhedron, 114, 110-117. doi:10.1016/j.poly.2015.11.016spa
dc.relation.referencesLaref, S., Asaduzzaman, A. M., Beck, W., Deymier, P. A., Runge, K., Adamowicz, L., & Muralidharan, K. (2013). Characterization of graphene-fullerene interactions: Insights from density functional theory.Chemical Physics Letters, 582, 115-118. doi:10.1016/j.cplett.2013.07.033spa
dc.relation.referencesMa, J., Guo, Q., Gao, H. -., & Qin, X. (2015). Synthesis of C60/Graphene composite as electrode in supercapacitors. Fullerenes Nanotubes and Carbon Nanostructures, 23(6), 477-482. doi:10.1080/1536383X.2013.865604spa
dc.relation.referencesManna, A. K., & Pati, S. K. (2013). Computational studies on non-covalent interactions of carbon and boron fullerenes with graphene. ChemPhysChem, 14(9), 1844-1852. doi:10.1002/cphc.201300155spa
dc.relation.referencesNasibulin, A. G., Pikhitsa, P. V., Jiang, H., Brown, D. P., Krasheninnikov, A. V., Anisimov, A. S., . . . Kauppinen, E. I. (2007). A novel hybrid carbon material. Nature Nanotechnology, 2(3), 156-161. doi:10.1038/nnano.2007.37spa
dc.relation.referencesOsella, S., Narita, A., Schwab, M. G., Hernandez, Y., Feng, X., Müllen, K., & Beljonne, D. (2012). Graphene nanoribbons as low band gap donor materials for organic photovoltaics: Quantum chemical aided design. ACS Nano, 6(6), 5539-5548. doi:10.1021/nn301478cspa
dc.relation.referencesSasaki, K. -., Kato, K., Tokura, Y., Oguri, K., & Sogawa, T. (2011). Theory of optical transitions in graphene nanoribbons. Physical Review B - Condensed Matter and Materials Physics, 84(8) doi:10.1103/PhysRevB.84.085458spa
dc.relation.referencesSoler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., & Sánchez-Portal, D. (2002). The SIESTA method for ab initio order-N materials simulation. Journal of Physics Condensed Matter, 14(11), 2745-2779. doi:10.1088/0953-8984/14/11/302spa
dc.relation.referencesUlbricht, H., Moos, G., & Hertel, T. (2003). Interaction of C60 with carbon nanotubes and graphite. Physical Review Letters, 90(9), 095501/1-095501/4.spa
dc.relation.referencesZhang, K., Zhang, Y., & Wang, S. (2013). Enhancing thermoelectric properties of organic composites through hierarchical nanostructures. Scientific Reports, 3 doi:10.1038/srep03448spa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem