Mostrar el registro sencillo del ítem

dc.creatorDelley M.F.spa
dc.creatorPraveen C.S.spa
dc.creatorBorosy A.P.spa
dc.creatorNúñez-Zarur F.spa
dc.creatorComas-Vives A.spa
dc.creatorCopéret C.spa
dc.date.accessioned2017-12-19T19:36:42Z
dc.date.available2017-12-19T19:36:42Z
dc.date.created2017
dc.identifier.issn219517
dc.identifier.urihttp://hdl.handle.net/11407/4257
dc.description.abstractSilica-supported well-defined Cr(III) sites, which polymerize ethene, are barely reactive towards propene while they copolymerize propene and ethene, a reactivity pattern similar to what is observed for the Phillips catalyst. In contrast to ethene, propene is only polymerized in low amounts and by a small fraction of sites, while during propene/ethene copolymerization small amounts of olefinic oligomers are formed. This difference of reactivity pattern among various olefins is further examined by DFT calculations using periodic amorphous models, focusing on the initiation of polymerization by olefin insertion into the Cr–O bond vs. the heterolytic C–H activation of the alkene. For both mechanisms, we found that the initial activation displays similar energetics for propene and ethene, while the subsequent propene insertion associated with chain growth becomes rather demanding, which rationalizes the observed difference of reactivity between ethene and propene. © 2017 Elsevier Inc.eng
dc.language.isoeng
dc.publisherAcademic Press Inc.spa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85029025032&doi=10.1016%2fj.jcat.2017.08.016&partnerID=40&md5=2f7fe65684e78b4b350d61d8c50ed0ebspa
dc.sourceScopusspa
dc.titleOlefin polymerization on Cr(III)/SiO2: Mechanistic insights from the differences in reactivity between ethene and propenespa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.contributor.affiliationDelley, M.F., ETH Zürich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5, Zürich, Switzerlandspa
dc.contributor.affiliationPraveen, C.S., ETH Zürich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5, Zürich, Switzerlandspa
dc.contributor.affiliationBorosy, A.P., ETH Zürich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5, Zürich, Switzerlandspa
dc.contributor.affiliationNúñez-Zarur, F., ETH Zürich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5, Zürich, Switzerland, Facultad de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 N° 30-65, Medellín, Colombiaspa
dc.contributor.affiliationComas-Vives, A., ETH Zürich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5, Zürich, Switzerlandspa
dc.contributor.affiliationCopéret, C., ETH Zürich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5, Zürich, Switzerlandspa
dc.identifier.doi10.1016/j.jcat.2017.08.016
dc.subject.keywordAmorphous modeleng
dc.subject.keywordCrIII siteseng
dc.subject.keywordDFT calculationseng
dc.subject.keywordEthene polymerizationeng
dc.subject.keywordPropene polymerizationeng
dc.subject.keywordSilicaeng
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.abstractSilica-supported well-defined Cr(III) sites, which polymerize ethene, are barely reactive towards propene while they copolymerize propene and ethene, a reactivity pattern similar to what is observed for the Phillips catalyst. In contrast to ethene, propene is only polymerized in low amounts and by a small fraction of sites, while during propene/ethene copolymerization small amounts of olefinic oligomers are formed. This difference of reactivity pattern among various olefins is further examined by DFT calculations using periodic amorphous models, focusing on the initiation of polymerization by olefin insertion into the Cr–O bond vs. the heterolytic C–H activation of the alkene. For both mechanisms, we found that the initial activation displays similar energetics for propene and ethene, while the subsequent propene insertion associated with chain growth becomes rather demanding, which rationalizes the observed difference of reactivity between ethene and propene. © 2017 Elsevier Inc.eng
dc.creator.affiliationETH Zürich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5, Zürich, Switzerlandspa
dc.creator.affiliationFacultad de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 N° 30-65, Medellín, Colombiaspa
dc.relation.ispartofesJournal of Catalysisspa
dc.relation.ispartofesJournal of Catalysis Volume 354, 2017, Pages 223-230spa
dc.relation.referencesAjjou, J. A. N., Scott, S. L., & Paquet, V. (1998). Synthesis and characterization of silica-stabilized chromium(IV) alkylidene complexes. Journal of the American Chemical Society, 120(2), 415-416. doi:10.1021/ja973177aspa
dc.relation.referencesAmor Nait Ajjou, J., & Scott, S. L. (1997). Reactions of tetraalkylchromium(IV) with silica: Mechanism of grafting and characterization of surface organometallic complexes. Organometallics, 16(1), 86-92. doi:10.1021/om960612lspa
dc.relation.referencesArlman, E. J. (1964). Ziegler-natta catalysis II. surface structure of layer-lattice transition metal chlorides. Journal of Catalysis, 3(1), 89-98.spa
dc.relation.referencesArlman, E. J., & Cossee, P. (1964). Ziegler-natta catalysis III. stereospecific polymerization of propene with the catalyst system TiCl3AlEt3. Journal of Catalysis, 3(1), 99-104.spa
dc.relation.referencesBeck, D. D., & Lunsford, J. H. (1981). The active site for ethylene polymerization over chromium supported on silica. Journal of Catalysis, 68(1), 121-131. doi:10.1016/0021-9517(81)90045-2spa
dc.relation.referencesBraunschweig, H., & Breitling, F. M. (2006). Constrained geometry complexes-synthesis and applications. Coordination Chemistry Reviews, 250(21-22), 2691-2720. doi:10.1016/j.ccr.2005.10.022spa
dc.relation.referencesBrintzinger, H. H., Fischer, D., Mülhaupt, R., Rieger, B., & Waymouth, R. M. (1995). Stereospecific olefin polymerization with chiral metallocene catalysts. Angewandte Chemie International Edition in English, 34(11), 1143-1170. doi:10.1002/anie.199511431spa
dc.relation.referencesBrown, C., Krzystek, J., Achey, R., Lita, A., Fu, R., Meulenberg, R. W., . . . Scott, S. L. (2015). Mechanism of initiation in the phillips ethylene polymerization catalyst: Redox processes leading to the active site.ACS Catalysis, 5(9), 5574-5583. doi:10.1021/acscatal.5b00927spa
dc.relation.referencesBroyden, C. G. (1970). The convergence of single rank quasi newton methods. Mathematics of Computation, 24(110), 365-382. doi:10.1090/S0025-5718-1970-0279993-0spa
dc.relation.referencesChakrabarti, A., Gierada, M., Handzlik, J., & Wachs, I. E. (2016). Operando molecular spectroscopy during ethylene polymerization by supported CrOx/SiO2 catalysts: Active sites, reaction intermediates, and structure-activity relationship. Topics in Catalysis, 59(8-9), 725-739. doi:10.1007/s11244-016-0546-6spa
dc.relation.referencesChen, E. Y. -., & Marks, T. J. (2000). Cocatalysts for metal-catalyzed olefin polymerization: Activators, activation processes, and structure-activity relationships. Chemical Reviews, 100(4), 1391-1434. doi:10.1021/cr980462jspa
dc.relation.referencesCheng, R., Liu, Z., Zhong, L., He, X., Qiu, P., Terano, M., . . . Liu, B. (2013). Phillips Cr/silica catalyst for ethylene polymerization doi:10.1007/12-2013-222spa
dc.relation.referencesCoates, G. W. (2000). Precise control of polyolefin stereochemistry using single-site metal catalysts. Chemical Reviews, 100(4), 1223-1252. doi:10.1021/cr990286uspa
dc.relation.referencesCoates, G. W., Hustad, P. D., & Reinartz, S. (2002). Catalysts for the living insertion polymerization of alkenes: Access to new polyolefin architectures using ziegler-natta chemistry. Angewandte Chemie - International Edition, 41(13), 2236-2257. doi:10.1002/1521-3773(20020703)41spa
dc.relation.referencesComas-Vives, A. (2016). Amorphous SiO2 surface models: Energetics of the dehydroxylation process, strain, ab initio atomistic thermodynamics and IR spectroscopic signatures. Physical Chemistry Chemical Physics, 18(10), 7475-7482. doi:10.1039/c6cp00602gspa
dc.relation.referencesConley, M. P., Delley, M. F., Núnez-Zarur, F., Comas-Vives, A., & Copéret, C. (2015). Heterolytic activation of C-H bonds on CrIII-O surface sites is a key step in catalytic polymerization of ethylene and dehydrogenation of propane. Inorganic Chemistry, 54(11), 5065-5078. doi:10.1021/ic502696nspa
dc.relation.referencesConley, M. P., Delley, M. F., Siddiqi, G., Lapadula, G., Norsic, S., Monteil, V., . . . Copéret, C. (2014). Polymerization of ethylene by silica-supported dinuclear CrIII sites through an initiation step involving C=H bond activation. Angewandte Chemie - International Edition, 53(7), 1872-1876. doi:10.1002/anie.201308983spa
dc.relation.referencesCopéret, C., Chabanas, M., Petroff Saint-Arroman, R., & Basset, J. -. (2003). Surface organometallic chemistry: Homogeneous and heterogeneous catalysis: Bridging the gap through surface organometallic chemistry. Angewandte Chemie - International Edition, 42(2), 156-181. doi:10.1002/anie.200390072spa
dc.relation.referencesCopéret, C., Comas-Vives, A., Conley, M. P., Estes, D. P., Fedorov, A., Mougel, V., . . . Zhizhko, P. A. (2016). Surface organometallic and coordination chemistry toward single-site heterogeneous catalysts: Strategies, methods, structures, and activities. Chemical Reviews, 116(2), 323-421. doi:10.1021/acs.chemrev.5b00373spa
dc.relation.referencesCorradini, P., Guerra, G., & Cavallo, L. (2004). Do new century catalysts unravel the mechanism of stereocontrol of old ziegler-natta catalysts? Accounts of Chemical Research, 37(4), 231-241. doi:10.1021/ar030165nspa
dc.relation.referencesCossee, P. (1964). Ziegler-natta catalysis I. mechanism of polymerization of α-olefins with ziegler-natta catalysts. Journal of Catalysis, 3(1), 80-88.spa
dc.relation.referencesDelley, M. F. (2015). A molecular approach to well-defined metal sites supported on oxides with oxidation state and nuclearity control. Chimia, 69(4), 168-171. doi:10.2533/chimia.2015.168spa
dc.relation.referencesDelley, M. F., Lapadula, G., Núñez-Zarur, F., Comas-Vives, A., Kalendra, V., Jeschke, G., . . . Copéret, C. (2017). Local structures and heterogeneity of silica-supported M(III) sites evidenced by EPR, IR, NMR, and luminescence spectroscopies. Journal of the American Chemical Society, 139(26), 8855-8867. doi:10.1021/jacs.7b02179spa
dc.relation.referencesDelley, M. F., Núñez-Zarur, F., Conley, M. P., Comas-Vives, A., Siddiqi, G., Norsic, S., . . . Copéret, C. (2014). Proton transfers are key elementary steps in ethylene polymerization on isolated chromium(III) silicates. Proceedings of the National Academy of Sciences of the United States of America, 111(32), 11624-11629. doi:10.1073/pnas.1405314111spa
dc.relation.referencesEspelid, Ø., & Børve, K. J. (2002). Molecular-level insight into Cr/silica phillips-type catalysts: Polymerization-active dinuclear chromium sites. Journal of Catalysis, 206(2), 331-338. doi:10.1006/jcat.2001.3499spa
dc.relation.referencesFloryan, L., Borosy, A. P., Núñez-Zarur, F., Comas-Vives, A., & Copéret, C. (2017). Strain effect and dual initiation pathway in CrIII/SiO2polymerization catalysts from amorphous periodic models. Journal of Catalysis, 346, 50-56. doi:10.1016/j.jcat.2016.11.037spa
dc.relation.referencesFong, A., Peters, B., & Scott, S. L. (2016). One-electron-redox activation of the reduced phillips polymerization catalyst, via alkylchromium(IV) homolysis: A computational assessment. ACS Catalysis, 6(9), 6073-6085. doi:10.1021/acscatal.6b01728spa
dc.relation.referencesFong, A., Yuan, Y., Ivry, S. L., Scott, S. L., & Peters, B. (2015). Computational kinetic discrimination of ethylene polymerization mechanisms for the phillips (Cr/SiO2) catalyst. ACS Catalysis, 5(6), 3360-3374. doi:10.1021/acscatal.5b00016spa
dc.relation.referencesFujdala, K. L., & Tilley, T. D. (2003). Design and synthesis of heterogeneous catalysts: The thermolytic molecular precursor approach. Journal of Catalysis, 216(1-2), 265-275. doi:10.1016/S0021-9517(02)00106-9spa
dc.relation.referencesGhiotti, G., Garrone, E., Coluccia, S., Morterra, C., & Zecchina, A. (1979). Evidence for alkylidenic configuration of polymethylene chains on a phillips catalyst. Journal of the Chemical Society, Chemical Communications, (22), 1032-1033. doi:10.1039/C39790001032spa
dc.relation.referencesGhiotti, G., Garrone, E., & Zecchina, A. (1988). IR investigation of polymerization centres of the phillips catalyst. Journal of Molecular Catalysis, 46(1-3), 61-77. doi:10.1016/0304-5102(88)85083-1spa
dc.relation.referencesGierada, M., & Handzlik, J. (2017). Active sites formation and their transformations during ethylene polymerization by the phillips CrOx/SiO2 catalyst. Journal of Catalysis, 352, 314-328. doi:10.1016/j.jcat.2017.05.025spa
dc.relation.referencesGoedecker, S., Teter, M., & Hutter, J. (1996). Separable dual-space gaussian pseudopotentials. Physical Review B - Condensed Matter and Materials Physics, 54(3), 1703-1710.spa
dc.relation.referencesGrimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-pu. Journal of Chemical Physics, 132(15) doi:10.1063/1.3382344spa
dc.relation.referencesGrimme, S., Ehrlich, S., & Goerigk, L. (2011). Effect of the damping function in dispersion corrected density functional theory. Journal of Computational Chemistry, 32(7), 1456-1465. doi:10.1002/jcc.21759spa
dc.relation.referencesGroppo, E., Estephane, J., Lamberti, C., Spoto, G., & Zecchina, A. (2007). Ethylene, propylene and ethylene oxide in situ polymerization on the cr(II)/SiO2 system: A temperature- and pressure-dependent investigation. Catalysis Today, 126(1-2), 228-234. doi:10.1016/j.cattod.2007.01.052spa
dc.relation.referencesGroppo, E., Lamberti, C., Bordiga, S., Spoto, G., & Zecchina, A. (2006). In situ FTIR spectroscopy of key intermediates in the first stages of ethylene polymerization on the Cr/SiO2 phillips catalyst: Solving the puzzle of the initiation mechanism? Journal of Catalysis, 240(2), 172-181. doi:10.1016/j.jcat.2006.03.006spa
dc.relation.referencesGroppo, E., Lamberti, C., Bordiga, S., Spoto, G., & Zecchina, A. (2005). The structure of active centers and the ethylene polymerization mechanism on the Cr/SiO2 catalyst: A frontier for the characterization methods. Chemical Reviews, 105(1), 115-183. doi:10.1021/cr040083sspa
dc.relation.referencesGrubbs, R. H., & Coates, G. W. (1996). Acc.Chem.Res., 29, 85-93.spa
dc.relation.referencesHartwigsen, C., Goedecker, S., & Hutter, J. (1998). Relativistic separable dual-space gaussian pseudopotentials from H to rn. Physical Review B - Condensed Matter and Materials Physics, 58(7), 3641-3662.spa
dc.relation.referencesIkeda, H., Monoi, T., & Sasaki, Y. (2003). Performance of the cr[CH(SiMe3)2]3/SiO2 catalyst for ethylene polymerization compared with the performance of the phillips catalyst. Journal of Polymer Science, Part A: Polymer Chemistry, 41(3), 413-419. doi:10.1002/pola.10590spa
dc.relation.referencesIttel, S. D., Johnson, L. K., & Brookhart, M. (2000). Late-metal catalysts for ethylene homo- and copolymerization. Chemical Reviews, 100(4), 1169-1203. doi:10.1021/cr9804644spa
dc.relation.referencesIvin, K. J., Rooney, J. J., Stewart, C. D., Green, M. L. H., & Mahtab, R. (1978). Mechanism for the stereospecific polymerization of olefins by ziegler-natta catalysts. Journal of the Chemical Society, Chemical Communications, (14), 604-606. doi:10.1039/C39780000604spa
dc.relation.referencesKakugo, M., Naito, Y., Mizunuma, K., & Miyatake, T. (1982). 13C NMR determination of monomer sequence distribution in ethylene-propylene copolymers prepared with δ-TiCl3Al(C2H5)2Cl. Macromolecules, 15(4), 1150-1152. doi:10.1021/ma00232a037spa
dc.relation.referencesKaminsky, W. (2012). Discovery of methylaluminoxane as cocatalyst for olefin polymerization. Macromolecules, 45(8), 3289-3297. doi:10.1021/ma202453uspa
dc.relation.referencesKaminsky, W. (1998). Highly active metallocene catalysts for olefin polymerization. Journal of the Chemical Society - Dalton Transactions, (9), 1413-1418.spa
dc.relation.referencesKrack, M. (2005). Pseudopotentials for H to kr optimized for gradient-corrected exchange-correlation functionals. Theoretical Chemistry Accounts, 114(1-3), 145-152. doi:10.1007/s00214-005-0655-yspa
dc.relation.referencesKrauss, H. L., & Stach, H. (1969). Über oberflächenverbindungen von übergangsmetallen. IV. polymerisationsreaktionen an Oberflächen‐Chrom(II)‐Verbindungen. ZAAC ‐ Journal of Inorganic and General Chemistry, 366(5-6), 280-290. doi:10.1002/zaac.19693660505spa
dc.relation.referencesLiu, B., Nakatani, H., & Terano, M. (2003). Mechanistic implications of the unprecedented transformations of ethene into propene and butene over phillips CrOx/SiO2 catalyst during induction period. Journal of Molecular Catalysis A: Chemical, 201(1-2), 189-197. doi:10.1016/S1381-1169(03)00151-1spa
dc.relation.referencesLiu, D., & Nocedal, J. (1989). Siam.J.Sci.Stat.Comp., 10, 1-17.spa
dc.relation.referencesLiu, H. -., Cai, I. C., Fedorov, A., Ziegler, M. S., Copéret, C., & Tilley, T. D. (2016). Tricoordinate organochromium(III) complexes supported by a bulky silylamido ligand produce ultra-high-molecular weight polyethylene in the absence of activators. Helvetica Chimica Acta, 99(11), 859-867. doi:10.1002/hlca.201600199spa
dc.relation.referencesLiu, Z., He, X., Cheng, R., Eisen, M. S., Terano, M., Scott, S. L., & Liu, B. (2014). Adv.Chem.Eng., 44, 127-191.spa
dc.relation.referencesMacAdams, L. A., Buffone, G. P., Incarvito, C. D., Rheingold, A. L., & Theopold, K. H. (2005). A chromium catalyst for the polymerization of ethylene as a homogeneous model for the phillips catalyst. Journal of the American Chemical Society, 127(4), 1082-1083. doi:10.1021/ja043877xspa
dc.relation.referencesMasson, P., Llauro-Darricades, M. -., Spitz, R., & Cheng, H. N. (1996). A study of the dispersity of catalytic sites in ethylene/propylene copolymerization through computer-assisted 13C NMR analysis.International Journal of Polymer Analysis and Characterization, 2(4), 379-393.spa
dc.relation.referencesMcDaniel, M. P. (1985). Supported chromium catalysts for ethylene polymerization doi:10.1016/S0360-0564(08)60258-8spa
dc.relation.referencesMyers, D. L., & Lunsford, J. H. (1985). Silica-supported chromium catalysts for ethylene polymerization. Journal of Catalysis, 92(2), 260-271. doi:10.1016/0021-9517(85)90260-Xspa
dc.relation.referencesNakamura, A., Ito, S., & Nozaki, K. (2009). Coordination-insertion copolymerization of fundamental polar monomers. Chemical Reviews, 109(11), 5215-5244. doi:10.1021/cr900079rspa
dc.relation.referencesNocedal, J. (1980). Updating quasi-newton matrices with limited storage. Math.Comput., 35(151), 773-782.spa
dc.relation.referencesNovokshonova, L. A., & Zakharov, V. A. (2013). Kinetics of olefin polymerization and active sites of heterogeneous ziegler-natta catalysts doi:10.1007/12-2013-227spa
dc.relation.referencesNúñez-Zarur, F., & Comas-Vives, A. (2015). The effect of the electronic nature of spectator ligands in the C-H bond activation of ethylene by cr(III) silicates: An ab initio study. Chimia, 69(4), 225-229. doi:10.2533/chimia.2015.225spa
dc.relation.referencesPelletier, J. D. A., & Basset, J. -. (2016). Catalysis by design: Well-defined single-site heterogeneous catalysts. Accounts of Chemical Research, 49(4), 664-677. doi:10.1021/acs.accounts.5b00518spa
dc.relation.referencesPerdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/PhysRevLett.77.3865spa
dc.relation.referencesPerdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., . . . Burke, K. (2008). Restoring the density-gradient expansion for exchange in solids and surfaces. Physical Review Letters, 100(13) doi:10.1103/PhysRevLett.100.136406spa
dc.relation.referencesPrzhevalskaya, L. K., Shvets, V. A., & Kazansky, V. B. (1975). The study of active centers of ethylene polymerization over chromium catalysts prepared from tri- and bivalent chromium compounds. Journal of Catalysis, 39(3), 363-368. doi:10.1016/0021-9517(75)90302-4spa
dc.relation.referencesRappé, A. K., Skiff, W. M., & Casewit, C. J. (2000). Modeling metal-catalyzed olefin polymerization. Chemical Reviews, 100(4), 1435-1456. doi:10.1021/cr9902493spa
dc.relation.referencesRebenstorf, B. (1988). An IR study of the polymerization mechanism of the phillips catalyst. Journal of Molecular Catalysis, 45(2), 263-274. doi:10.1016/0304-5102(88)80016-6spa
dc.relation.referencesRebenstorf, B., & Larsson, R. (1981). Why do homogeneous analogs of phillips (CrO3/SiO2) and union carbide (Chromocene/SiO2) polyethylene catalysts fail? some answers from ir investigations. Journal of Molecular Catalysis, 11(2-3), 247-256. doi:10.1016/0304-5102(81)87012-5spa
dc.relation.referencesShanno, D. F., & Kettler, P. C. (1970). Optimal conditioning of quasi-newton methods. Mathematics of Computation, 24(111), 657-664. doi:10.1090/S0025-5718-1970-0274030-6spa
dc.relation.referencesStürzel, M., Mihan, S., & Mülhaupt, R. (2016). From multisite polymerization catalysis to sustainable materials and all-polyolefin composites. Chemical Reviews, 116(3), 1398-1433. doi:10.1021/acs.chemrev.5b00310spa
dc.relation.referencesTada, M., & Iwasawa, Y. (2007). Advanced design of catalytically active reaction space at surfaces for selective catalysis. Coordination Chemistry Reviews, 251(21-24), 2702-2716. doi:10.1016/j.ccr.2007.06.008spa
dc.relation.referencesTheopold, K. H. (1998). Homogeneous chromium catalysts for olefin polymerization. European Journal of Inorganic Chemistry, (1), 15-24. Retrieved from www.scopus.comspa
dc.relation.referencesThomas, B. J., Noh, S. K., Sendlinger, S. C., & Schulte, G. K. (1991). Paramagnetic alkylchromium compounds as homogeneous catalysts for the polymerization of ethylene. Journal of the American Chemical Society, 113(3), 893-902. doi:10.1021/ja00003a024spa
dc.relation.referencesVandeVondele, J., & Hutter, J. (2003). An efficient orbital transformation method for electronic structure calculations. Journal of Chemical Physics, 118(10), 4365-4369. doi:10.1063/1.1543154spa
dc.relation.referencesVandeVondele, J., & Hutter, J. (2007). Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. Journal of Chemical Physics, 127(11) doi:10.1063/1.2770708spa
dc.relation.referencesWeckhuysen, B. M., & Schoonheydt, R. A. (1999). Olefin polymerization over supported chromium oxide catalysts. Catalysis Today, 51(2), 215-221.spa
dc.relation.referencesWegener, S. L., Marks, T. J., & Stair, P. C. (2012). Design strategies for the molecular level synthesis of supported catalysts. Accounts of Chemical Research, 45(2), 206-214. doi:10.1021/ar2001342spa
dc.relation.referencesWeiss, K., & Krauss, H. -. (1984). Surface compounds of transition metals. XXVIII. polymerization of n-1-alkenes with surface chromium(II) on silica gel support at low temperatures and normal pressure.Journal of Catalysis, 88(2), 424-430. doi:10.1016/0021-9517(84)90020-4spa
dc.relation.referencesWhite, J. L., & Choi, D. D. (2005). Polyolefins: Processing, Structure Development, and Properties.spa
dc.relation.referencesZhang, Y., & Yang, W. (1998). Phys.Rev.Lett., 80, 890-890.spa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem