Mostrar el registro sencillo del ítem

dc.creatorUgarte J.P.spa
dc.creatorDuque S.I.spa
dc.creatorDuque A.O.spa
dc.creatorTobón C.spa
dc.creatorBustamante J.spa
dc.creatorAndrade-Caicedo H.spa
dc.date.accessioned2017-12-19T19:36:42Z
dc.date.available2017-12-19T19:36:42Z
dc.date.created2017
dc.identifier.isbn9789811040856
dc.identifier.issn16800737
dc.identifier.urihttp://hdl.handle.net/11407/4258
dc.description.abstractComputational simulations are used as tool to study atrial fibrillation and its maintaining mechanisms. Phase analysis has been used to elucidate the mechanisms by which a reentry is generated. However, clinical application of phase mapping requires a signal preprocessing stage that could affect the activation sequences. In this work we use the fractional diffusion equation to generate fibrillatory dynamics, including stable and meandering rotors, and multiple wavelets, by varying the order of the spatial fractional derivatives obtaining different complexity levels of propagation in a 2D domain. We applied nonlinear measures to characterize the propagation patterns from electrograms. Our results show that electroanatomical maps constructed using approximate entropy and multifractal analysis, are able to detect the tip of stable and meandering rotors, and to mark the occurrence of collisions and wave breaks. Application of these signal processing techniques to clinical practice is feasible and could improve atrial fibrillation ablation procedures. © Springer Nature Singapore Pte Ltd. 2017.eng
dc.language.isoeng
dc.publisherSpringer Verlagspa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85018383521&doi=10.1007%2f978-981-10-4086-3_136&partnerID=40&md5=6ca3f6c0bfc02238feb5e0952ffe2effspa
dc.sourceScopusspa
dc.titleNonlinear measures characterize atrial fibrillatory dynamics generated using fractional diffusionspa
dc.typeConference Papereng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.contributor.affiliationUgarte, J.P., Grupo de Dinámica Cardiovascular, Universidad Pontificia Bolivariana, Medellín, Colombiaspa
dc.contributor.affiliationDuque, S.I., Grupo de Dinámica Cardiovascular, Universidad Pontificia Bolivariana, Medellín, Colombiaspa
dc.contributor.affiliationDuque, A.O., Grupo de Investigación e Innovación Biomédica, Instituto Tecnológico Metropolitano, Medellín, Colombiaspa
dc.contributor.affiliationTobón, C., Grupo de Investigación en Materiales Nanoestructurados y Biomodelación, Universidad de Medellín, Medellín, Colombiaspa
dc.contributor.affiliationBustamante, J., Grupo de Dinámica Cardiovascular, Universidad Pontificia Bolivariana, Medellín, Colombiaspa
dc.contributor.affiliationAndrade-Caicedo, H., Grupo de Dinámica Cardiovascular, Universidad Pontificia Bolivariana, Medellín, Colombiaspa
dc.identifier.doi10.1007/978-981-10-4086-3_136
dc.subject.keywordAtrial fibrillationeng
dc.subject.keywordFractional diffusioneng
dc.subject.keywordNonlinear measureseng
dc.subject.keywordPhase analysiseng
dc.subject.keywordRotorseng
dc.subject.keywordAblationeng
dc.subject.keywordBiomedical engineeringeng
dc.subject.keywordDiffusioneng
dc.subject.keywordDiseaseseng
dc.subject.keywordRotorseng
dc.subject.keywordSignal processingeng
dc.subject.keywordAtrial fibrillationeng
dc.subject.keywordComputational simulationeng
dc.subject.keywordFractional derivativeseng
dc.subject.keywordFractional diffusioneng
dc.subject.keywordFractional diffusion equationeng
dc.subject.keywordNonlinear measureeng
dc.subject.keywordPhase analysiseng
dc.subject.keywordSignal processing techniqueeng
dc.subject.keywordNonlinear analysiseng
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.abstractComputational simulations are used as tool to study atrial fibrillation and its maintaining mechanisms. Phase analysis has been used to elucidate the mechanisms by which a reentry is generated. However, clinical application of phase mapping requires a signal preprocessing stage that could affect the activation sequences. In this work we use the fractional diffusion equation to generate fibrillatory dynamics, including stable and meandering rotors, and multiple wavelets, by varying the order of the spatial fractional derivatives obtaining different complexity levels of propagation in a 2D domain. We applied nonlinear measures to characterize the propagation patterns from electrograms. Our results show that electroanatomical maps constructed using approximate entropy and multifractal analysis, are able to detect the tip of stable and meandering rotors, and to mark the occurrence of collisions and wave breaks. Application of these signal processing techniques to clinical practice is feasible and could improve atrial fibrillation ablation procedures. © Springer Nature Singapore Pte Ltd. 2017.eng
dc.creator.affiliationGrupo de Dinámica Cardiovascular, Universidad Pontificia Bolivariana, Medellín, Colombiaspa
dc.creator.affiliationGrupo de Investigación e Innovación Biomédica, Instituto Tecnológico Metropolitano, Medellín, Colombiaspa
dc.creator.affiliationGrupo de Investigación en Materiales Nanoestructurados y Biomodelación, Universidad de Medellín, Medellín, Colombiaspa
dc.relation.ispartofesIFMBE Proceedingsspa
dc.relation.ispartofesIFMBE Proceedings Volume 60, 2017, Pages 541-544spa
dc.relation.referencesAlfonso, B. -., David, K., Vicente, G., Blanca, R., & Kevin, B. (2014). Fractional Diffusion Models of Cardiac Electrical Propagation: Role of Structural Heterogeneity in Dispersion of Repolarization Journal of the Royal Society Interface, 11.spa
dc.relation.referencesAndres, O. -., John, B., & German, C. -. (2016). Semi-Supervised Clustering of Fractionated Electrograms for Electroanatomical Atrial Mapping Biomedical Engineering Online, 15, 1-19.spa
dc.relation.referencesBerenfeld, O., & Jalife, J. (2016). Mechanisms of atrial fibrillation: Rotors, ionic determinants, and excitation frequency. Heart Failure Clinics, 12(2), 167-178. doi:10.1016/j.hfc.2015.08.014spa
dc.relation.referencesBray, M. -., Shien-Fong, L. I. N., Aliev, R. R., Roth, B. J., & Wikswo Jr., J. P. (2001). Experimental and theoretical analysis of phase singularity dynamics in cardiac tissue. Journal of Cardiovascular Electrophysiology, 12(6), 716-722.spa
dc.relation.referencesClayton Richard, H., & Nash Martyn, P. (2015). Analysis of Cardiac Fibrillation using Phase Mapping Cardiac Electrophysiology Clinics, 7, 49-58.spa
dc.relation.referencesClayton, R. H., Bernus, O., Cherry, E. M., Dierckx, H., Fenton, F. H., Mirabella, L., . . . Zhang, H. (2011). Models of cardiac tissue electrophysiology: Progress, challenges and open questions. Progress in Biophysics and Molecular Biology, 104(1-3), 22-48. doi:10.1016/j.pbiomolbio.2010.05.008spa
dc.relation.referencesFenton Flavio, H., Cherry Elizabeth, M., Hastings Harold, M., & Evans Steven, J. (2002). Multiple Mechanisms of Spiral Wave Breakup in a Model of Cardiac Electrical Activity Chaos, 12, 852-892.spa
dc.relation.referencesJanuary Craig, T., Samuel, W. L., & Alpert, J. S. (2014). AHA/ACC/HRS Guideline for the Management of Patients with Atrial Fibrillation: Executive Summary Journal of the American College of Cardiology.spa
dc.relation.referencesKantelhardt Jan, W., Zschiegner Stephan, A., Eva, K. -., Armin, B., Shlomo, H., & Eugene, S. H. (2002). Multifractal Detrended Fluctuation Analysis of Nonstationary Time Series Physica A, 316, 87-101.spa
dc.relation.referencesLiu, F., Turner, I., Anh, V., Yang, Q., & Burrage, K. (2012). A numerical method for the fractional fitzhugh,nagumo monodomain model. ANZIAM Journal, 54(SUPPL), C608-C629.spa
dc.relation.referencesMathias, B., Prashanthan, S., & Ganesan, A. (2016). Quantitative-Electrogram-Based Methods for Guiding Catheter Ablation in Atrial Fibrillation Proceeding of the IEEE, 104, 416-431.spa
dc.relation.referencesMohammad, S., Gerhard, H., Martin, B., Breithardt, G., & Josephson Mark, E. (2013).spa
dc.relation.referencesNarayan, S. M., Krummen, D. E., Shivkumar, K., Clopton, P., Rappel, W. -., & Miller, J. M. (2012). Treatment of atrial fibrillation by the ablation of localized sources: CONFIRM (conventional ablation for atrial fibrillation with or without focal impulse and rotor modulation) trial. Journal of the American College of Cardiology, 60(7), 628-636. doi:10.1016/j.jacc.2012.05.022spa
dc.relation.referencesOrozco-Duque, A., Novak, D., Kremen, V., & Bustamante, J. (2015). Multifractal analysis for grading complex fractionated electrograms in atrial fibrillation. Physiological Measurement, 36(11), 2269-2284. doi:10.1088/0967-3334/36/11/2269spa
dc.relation.referencesPincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences of the United States of America, 88(6), 2297-2301.spa
dc.relation.referencesUgarte, J. P., Orozco-Duque, A., & Tobón, C. (2014). Dynamic Approximate Entropy Electroanatomic Maps Detect Rotors in a Simulated Atrial Fibrillation Model Plos One, 9.spa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem