Mostrar el registro sencillo del ítem

dc.creatorNúñez-Zarur F.spa
dc.creatorSolans-Monfort X.spa
dc.creatorRestrepo A.spa
dc.date.accessioned2017-12-19T19:36:42Z
dc.date.available2017-12-19T19:36:42Z
dc.date.created2017
dc.identifier.issn201669
dc.identifier.urihttp://hdl.handle.net/11407/4260
dc.description.abstractAlkane metathesis transforms small alkanes into their higher and lower homologues. The reaction is catalyzed by either supported d0 metal hydrides (M = Ta, W) or d0 alkyl alkylidene complexes (M = Ta, Mo, W, Re). For the silica-supported tantalum hydrides, several reaction mechanisms have been proposed. We performed DFT-D3 calculations to analyze the viability of the proposed pathways and compare them with alkane hydrogenolysis, which is a competitive process observed at the early stages of the reaction. The results show that the reaction mechanisms for alkane metathesis and for alkane hydrogenolysis present similar energetics, and this is consistent with the fact that the process taking place depends on the concentrations of the initial reactants. Overall, a modified version of the so-called one-site mechanism that involves alkyl alkylidene intermediates appears to be more likely and consistent with experiments. According to this proposal, tantalum hydrides are precursors of the alkyl alkylidene active species. During precursor activation, H2 is released and this allows alkane hydrogenolysis to occur. In contrast, the catalytic cycle implies only the reaction with alkane molecules in excess and does not form H2. Thus, the activity for alkane hydrogenolysis decreases. The catalytic cycle proposed here implies three stages: (i) β-H elimination from the alkyl ligand, liberating ethene, (ii) alkene cross-metathesis, allowing olefin substituent exchange, and (iii) formation of the final products and alkyl alkylidene regeneration by olefin insertion and three successive 1,2-CH insertions to the alkylidene followed by α abstraction. These results relate the reactivity of silica-supported hydrides with that of the alkyl alkylidene complexes, the other common catalyst for alkane metathesis. © 2017 American Chemical Society.eng
dc.language.isoeng
dc.publisherAmerican Chemical Societyspa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85028926911&doi=10.1021%2facs.inorgchem.7b01464&partnerID=40&md5=3ee308857653f4bcc9e01659e1ad5acbspa
dc.sourceScopusspa
dc.titleMechanistic Insights into Alkane Metathesis Catalyzed by Silica-Supported Tantalum Hydrides: A DFT Studyspa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.contributor.affiliationNúñez-Zarur, F., Instituto de Química, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia, Facultad de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, Colombiaspa
dc.contributor.affiliationSolans-Monfort, X., Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spainspa
dc.contributor.affiliationRestrepo, A., Instituto de Química, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombiaspa
dc.identifier.doi10.1021/acs.inorgchem.7b01464
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.abstractAlkane metathesis transforms small alkanes into their higher and lower homologues. The reaction is catalyzed by either supported d0 metal hydrides (M = Ta, W) or d0 alkyl alkylidene complexes (M = Ta, Mo, W, Re). For the silica-supported tantalum hydrides, several reaction mechanisms have been proposed. We performed DFT-D3 calculations to analyze the viability of the proposed pathways and compare them with alkane hydrogenolysis, which is a competitive process observed at the early stages of the reaction. The results show that the reaction mechanisms for alkane metathesis and for alkane hydrogenolysis present similar energetics, and this is consistent with the fact that the process taking place depends on the concentrations of the initial reactants. Overall, a modified version of the so-called one-site mechanism that involves alkyl alkylidene intermediates appears to be more likely and consistent with experiments. According to this proposal, tantalum hydrides are precursors of the alkyl alkylidene active species. During precursor activation, H2 is released and this allows alkane hydrogenolysis to occur. In contrast, the catalytic cycle implies only the reaction with alkane molecules in excess and does not form H2. Thus, the activity for alkane hydrogenolysis decreases. The catalytic cycle proposed here implies three stages: (i) β-H elimination from the alkyl ligand, liberating ethene, (ii) alkene cross-metathesis, allowing olefin substituent exchange, and (iii) formation of the final products and alkyl alkylidene regeneration by olefin insertion and three successive 1,2-CH insertions to the alkylidene followed by α abstraction. These results relate the reactivity of silica-supported hydrides with that of the alkyl alkylidene complexes, the other common catalyst for alkane metathesis. © 2017 American Chemical Society.eng
dc.creator.affiliationInstituto de Química, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombiaspa
dc.creator.affiliationDepartament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spainspa
dc.creator.affiliationFacultad de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, Colombiaspa
dc.relation.ispartofesInorganic Chemistryspa
dc.relation.ispartofesInorganic Chemistry Volume 56, Issue 17, 5 September 2017, Pages 10458-10473spa
dc.relation.referencesAdamo, C., & Barone, V. (1999). Toward reliable density functional methods without adjustable parameters: The PBE0 model. Journal of Chemical Physics, 110(13), 6158-6170.spa
dc.relation.referencesAmakawa, K., Sun, L., Guo, C., Hävecker, M., Kube, P., Wachs, I. E., . . . Trunschke, A. (2013). How strain affects the reactivity of surface metal oxide catalysts. Angewandte Chemie - International Edition, 52(51), 13553-13557. doi:10.1002/anie.201306620spa
dc.relation.referencesAvenier, P., Solans-Monfort, X., Veyre, L., Renili, F., Basset, J. -., Eisenstein, O., . . . Quadrelli, E. A. (2009). H/D exchange on silica-grafted tantalum(V) imido amido [(≡SiO) 2Ta(V)(NH)(NH2)] synthesized from either ammonia or dinitrogen: IR and DFT evidence for heterolytic splitting of D 2. Topics in Catalysis, 52(11), 1482-1491. doi:10.1007/s11244-009-9295-0spa
dc.relation.referencesAvenier, P., Taoufik, M., Lesage, A., Solans-Monfort, X., Baudouin, A., De Mallmann, A., . . . Quadrelli, E. A. (2007). Dinitrogen dissociation on an isolated surface tantalum atom. Science, 317(5841), 1056-1060. doi:10.1126/science.1143078spa
dc.relation.referencesBailey, B. C., Schrock, R. R., Kundu, S., Goldman, A. S., Huang, Z., & Brookhart, M. (2009). Evaluation of molybdenum and tungsten metathesis catalysts for homogeneous tandem alkane metathesis.Organometallics, 28(1), 355-360. doi:10.1021/om800877qspa
dc.relation.referencesBalcells, D., Clot, E., & Eisenstein, O. (2010). C-H bond activation in transition metal species from a computational perspective. Chemical Reviews, 110(2), 749-823. doi:10.1021/cr900315kspa
dc.relation.referencesBasset, J. M., Copéret, C., Lefort, L., Maunders, B. M., Maury, O., Le Roux, E., . . . Thivolle-Cazat, J. (2005). Primary products and mechanistic considerations in alkane metathesis. Journal of the American Chemical Society, 127(24), 8604-8605. doi:10.1021/ja051679fspa
dc.relation.referencesBasset, J. -., Copéret, C., Soulivong, D., Taoufik, M., & Thivolle Cazat, J. (2010). Metathesis of alkanes and related reactions. Accounts of Chemical Research, 43(2), 323-334. doi:10.1021/ar900203aspa
dc.relation.referencesBecke, A. D. (1993). Density-functional thermochemistry. III. the role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652.spa
dc.relation.referencesBernardi, F., Bottoni, A., & Miscione, G. P. (2003). DFT study of the olefin metathesis catalyzed by ruthenium complexes. Organometallics, 22(5), 940-947. doi:10.1021/om020536ospa
dc.relation.referencesBlanc, F., Copéret, C., Thivolle-Cazat, J., & Basset, J. -. (2006). Alkane metathesis catalyzed by a well-defined silica-supported mo imido alkylidene complex: [(≡SiO)mo(=NAr)(=CHtBu)(CH2tBu)].Angewandte Chemie - International Edition, 45(37), 6201-6203. doi:10.1002/anie.200602171spa
dc.relation.referencesBlanc, F., Copéret, C., Thivolle-Cazat, J., Basset, J. -., Lesage, A., Emsley, L., . . . Schrock, R. R. (2006). Surface versus molecular siloxy ligands in well-defined olefin metathesis catalysts: [{(RO)3SiO}mo(=NAr)(=CHtBu)(CH2tBu)]. Angewandte Chemie - International Edition, 45(8), 1216-1220. doi:10.1002/anie.200503205spa
dc.relation.referencesBlanc, F., Thivolle-Cazat, J., Basset, J. -., & Copéret, C. (2008). Structure-reactivity relationship in alkane metathesis using well-defined silica-supported alkene metathesis catalyst precursors. Chemistry - A European Journal, 14(29), 9030-9037. doi:10.1002/chem.200800864spa
dc.relation.referencesBurnett, R. L., & Hughes, T. R. (1973). Mechanism and poisoning of the molecular redistribution reaction of alkanes with a dual-functional catalyst system. Journal of Catalysis, 31(1), 55-64. doi:10.1016/0021-9517(73)90270-4spa
dc.relation.referencesCavallo, L. (2002). Mechanism of ruthenium-catalyzed olefin metathesis reactions from a theoretical perspective. Journal of the American Chemical Society, 124(30), 8965-8973. doi:10.1021/ja016772sspa
dc.relation.referencesChabanas, M., Baudouin, A., Copéret, C., & Basset, J. -. (2001). A highly active well-defined rhenium heterogeneous catalyst for olefin metathesis prepared via surface organometallic chemistry [3]. Journal of the American Chemical Society, 123(9), 2062-2063. doi:10.1021/ja000900fspa
dc.relation.referencesChabanas, M., Copéret, C., & Basset, J. -. (2003). Re-based heterogeneous catalysts for olefin metathesis prepared by surface organometallic chemistry: Reactivity and selectivity. Chemistry - A European Journal, 9(4), 971-975. doi:10.1002/chem.200390119spa
dc.relation.referencesChabanas, M., Vidal, V., Copéret, C., Thivolle-Cazat, J., & Basset, J. -. (2000). Low-temperature hydrogenolysis of alkanes catalyzed by a silica- supported tantalum hydride complex, and evidence for a mechanistic switch from group IV to group V metal surface hydride complexes. Angewandte Chemie - International Edition, 39(11), 1962-1965. doi:10.1002/1521-3773(20000602)39:11<1962spa
dc.relation.referencesChen, Y., Abou-Hamad, E., Hamieh, A., Hamzaoui, B., Emsley, L., & Basset, J. -. (2015). Alkane metathesis with the tantalum methylidene [(≡SiO)ta(=CH2)Me2]/[(≡SiO)2Ta(=CH2)me] generated from well-defined surface organometallic complex [(≡SiO)TaVMe4]. Journal of the American Chemical Society, 137(2), 588-591. doi:10.1021/ja5113468spa
dc.relation.referencesCopéret, C. (2010). C-H bond activation and organometallic intermediates on isolated metal centers on oxide surfaces. Chemical Reviews, 110(2), 656-680. doi:10.1021/cr900122pspa
dc.relation.referencesCopéret, C., Maury, O., Thivolle-Cazat, J., & Basset, J. -. (2001). σ-Bond metathesis of alkanes on a silica-supported tantalum(v) alkyl alkylidene complex: First evidence for alkane cross-metathesis.Angewandte Chemie - International Edition, 40(12), 2331-2334. doi:10.1002/1521-3773(20010618)40spa
dc.relation.referencesEhlers, A. W., Böhme, M., Dapprich, S., Gobbi, A., Höllwarth, A., Jonas, V., . . . Frenking, G. (1993). A set of f-polarization functions for pseudo-potential basis sets of the transition metals ScCu, YAg and LaAu.Chemical Physics Letters, 208(1-2), 111-114. doi:10.1016/0009-2614(93)80086-5spa
dc.relation.referencesFloryan, L., Borosy, A. P., Núñez-Zarur, F., Comas-Vives, A., & Copéret, C. (2017). Strain effect and dual initiation pathway in CrIII/SiO2polymerization catalysts from amorphous periodic models. Journal of Catalysis, 346, 50-56. doi:10.1016/j.jcat.2016.11.037spa
dc.relation.referencesFrisch, M. J. (2009). Gaussian 09.spa
dc.relation.referencesFrisch, M. J., Pople, J. A., & Binkley, J. S. (1984). Self-consistent molecular orbital methods 25. supplementary functions for gaussian basis sets. The Journal of Chemical Physics, 80(7), 3265-3269.spa
dc.relation.referencesGoldman, A. S., Roy, A. H., Huang, Z., Ahuja, R., Schinski, W., & Brookhart, M. (2006). Catalytic alkane metathesis by tandem alkane dehydrogenation-olefin metathesis. Science, 312(5771), 257-261. doi:10.1126/science.1123787spa
dc.relation.referencesGouré, E., Avenier, P., Solans-Monfort, X., Veyre, L., Baudouin, A., Kaya, Y., . . . Quadrelli, E. A. (2011). Heterolytic cleavage of ammonia N-H bond by bifunctional activation in silica-grafted single site ta(V) imido amido surface complex. importance of the outer sphere NH3 assistance. New Journal of Chemistry, 35(5), 1011-1019. doi:10.1039/c1nj20032aspa
dc.relation.referencesGrimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-pu. Journal of Chemical Physics, 132(15) doi:10.1063/1.3382344spa
dc.relation.referencesGrimme, S., Ehrlich, S., & Goerigk, L. (2011). Effect of the damping function in dispersion corrected density functional theory. Journal of Computational Chemistry, 32(7), 1456-1465. doi:10.1002/jcc.21759spa
dc.relation.referencesHamieh, A., Chen, Y., Abdel-Azeim, S., Abou-hamad, E., Goh, S., Samantaray, M., . . . Basset, J. M. (2015). Well-defined surface species [(≡Si - O -)W(=O)Me3] prepared by direct methylation of [(≡Si - O -)W(=O)Cl3], a catalyst for cycloalkane metathesis and transformation of ethylene to propylene. ACS Catalysis, 5(4), 2164-2171. doi:10.1021/cs5020749spa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem