Mostrar el registro sencillo del ítem

dc.creatorGonzález-Bacerio J.spa
dc.creatorMaluf S.E.C.spa
dc.creatorMéndez Y.spa
dc.creatorPascual I.spa
dc.creatorFlorent I.spa
dc.creatorMelo P.M.S.spa
dc.creatorBudu A.spa
dc.creatorFerreira J.C.spa
dc.creatorMoreno E.spa
dc.creatorCarmona A.K.spa
dc.creatorRivera D.G.spa
dc.creatorAlonso del Rivero M.spa
dc.creatorGazarini M.L.spa
dc.date.accessioned2017-12-19T19:36:42Z
dc.date.available2017-12-19T19:36:42Z
dc.date.created2017
dc.identifier.issn9680896
dc.identifier.urihttp://hdl.handle.net/11407/4264
dc.description.abstractMalaria is a global human parasitic disease mainly caused by the protozoon Plasmodium falciparum. Increased parasite resistance to current drugs determines the relevance of finding new treatments against new targets. A novel target is the M1 alanyl-aminopeptidase from P. falciparum (PfA-M1), which is essential for parasite development in human erythrocytes and is inhibited by the pseudo-peptide bestatin. In this work, we used a combinatorial multicomponent approach to produce a library of peptidomimetics and screened it for the inhibition of recombinant PfA-M1 (rPfA-M1) and the in vitro growth of P. falciparum erythrocytic stages (3D7 and FcB1 strains). Dose-response studies with selected compounds allowed identifying the bestatin-based peptidomimetic KBE009 as a submicromolar rPfA-M1 inhibitor (Ki =0.4μM) and an in vitro antimalarial compound as potent as bestatin (IC50 =18μM; without promoting erythrocyte lysis). At therapeutic-relevant concentrations, KBE009 is selective for rPfA-M1 over porcine APN (a model of these enzymes from mammals), and is not cytotoxic against HUVEC cells. Docking simulations indicate that this compound binds PfA-M1 without Zn2+ coordination, establishing mainly hydrophobic interactions and showing a remarkable shape complementarity with the active site of the enzyme. Moreover, KBE009 inhibits the M1-type aminopeptidase activity (Ala-7-amido-4-methylcoumarin substrate) in isolated live parasites with a potency similar to that of the antimalarial activity (IC50 =82μM), strongly suggesting that the antimalarial effect is directly related to the inhibition of the endogenous PfA-M1. These results support the value of this multicomponent strategy to identify PfA-M1 inhibitors, and make KBE009 a promising hit for drug development against malaria. © 2017 Elsevier Ltd.eng
dc.language.isoeng
dc.publisherElsevier Ltdspa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85024090017&doi=10.1016%2fj.bmc.2017.06.047&partnerID=40&md5=6e084ac1c6fa5369f3297d4f65008552spa
dc.sourceScopusspa
dc.titleKBE009: An antimalarial bestatin-like inhibitor of the Plasmodium falciparum M1 aminopeptidase discovered in an Ugi multicomponent reaction-derived peptidomimetic libraryspa
dc.typeArticle in Presseng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.contributor.affiliationGonzález-Bacerio, J., Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cubaspa
dc.contributor.affiliationMaluf, S.E.C., Departamento de Biofísica, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, 7 andar, 04039-032, Vila Mariana, São Paulo, Brazilspa
dc.contributor.affiliationMéndez, Y., Centro de Estudio de Productos Naturales, Facultad de Química, Universidad de La Habana, Zapata y G, 10400 La Habana, Cubaspa
dc.contributor.affiliationPascual, I., Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cubaspa
dc.contributor.affiliationFlorent, I., Unité Molécules de Communication et Adaptation des Microorganismes, (MCAM, UMR 7245), Sorbonne Universités, Muséum National Histoire Naturelle, CNRS, CP 52, 57 Rue Cuvier, 75005 Paris, Francespa
dc.contributor.affiliationMelo, P.M.S., Departamento de Biofísica, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, 7 andar, 04039-032, Vila Mariana, São Paulo, Brazilspa
dc.contributor.affiliationBudu, A., Departamento de Biofísica, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, 7 andar, 04039-032, Vila Mariana, São Paulo, Brazilspa
dc.contributor.affiliationFerreira, J.C., Departamento de Biofísica, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, 7 andar, 04039-032, Vila Mariana, São Paulo, Brazilspa
dc.contributor.affiliationMoreno, E., Centro de Inmunología Molecular, Calle 15 esq. 216, Siboney, Playa, La Habana, Cuba, Universidad de Medellín, Carrera 87 #30-65, Medellín, Colombiaspa
dc.contributor.affiliationCarmona, A.K., Departamento de Biofísica, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, 7 andar, 04039-032, Vila Mariana, São Paulo, Brazilspa
dc.contributor.affiliationRivera, D.G., Centro de Estudio de Productos Naturales, Facultad de Química, Universidad de La Habana, Zapata y G, 10400 La Habana, Cubaspa
dc.contributor.affiliationAlonso del Rivero, M., Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cubaspa
dc.contributor.affiliationGazarini, M.L., Departamento de Biociências, Universidade Federal de São Paulo, R. Silva Jardim, 136, 11015-020, Vila Mathias, Santos, São Paulo, Brazilspa
dc.identifier.doi10.1016/j.bmc.2017.06.047
dc.subject.keywordAntimalarialseng
dc.subject.keywordCombinatorial synthesiseng
dc.subject.keywordMetallo-aminopeptidase inhibitorseng
dc.subject.keywordMulticomponent reactionseng
dc.subject.keywordPfA-M1eng
dc.subject.keywordPlasmodium falciparumeng
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.abstractMalaria is a global human parasitic disease mainly caused by the protozoon Plasmodium falciparum. Increased parasite resistance to current drugs determines the relevance of finding new treatments against new targets. A novel target is the M1 alanyl-aminopeptidase from P. falciparum (PfA-M1), which is essential for parasite development in human erythrocytes and is inhibited by the pseudo-peptide bestatin. In this work, we used a combinatorial multicomponent approach to produce a library of peptidomimetics and screened it for the inhibition of recombinant PfA-M1 (rPfA-M1) and the in vitro growth of P. falciparum erythrocytic stages (3D7 and FcB1 strains). Dose-response studies with selected compounds allowed identifying the bestatin-based peptidomimetic KBE009 as a submicromolar rPfA-M1 inhibitor (Ki =0.4μM) and an in vitro antimalarial compound as potent as bestatin (IC50 =18μM; without promoting erythrocyte lysis). At therapeutic-relevant concentrations, KBE009 is selective for rPfA-M1 over porcine APN (a model of these enzymes from mammals), and is not cytotoxic against HUVEC cells. Docking simulations indicate that this compound binds PfA-M1 without Zn2+ coordination, establishing mainly hydrophobic interactions and showing a remarkable shape complementarity with the active site of the enzyme. Moreover, KBE009 inhibits the M1-type aminopeptidase activity (Ala-7-amido-4-methylcoumarin substrate) in isolated live parasites with a potency similar to that of the antimalarial activity (IC50 =82μM), strongly suggesting that the antimalarial effect is directly related to the inhibition of the endogenous PfA-M1. These results support the value of this multicomponent strategy to identify PfA-M1 inhibitors, and make KBE009 a promising hit for drug development against malaria. © 2017 Elsevier Ltd.eng
dc.creator.affiliationCentro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cubaspa
dc.creator.affiliationDepartamento de Biofísica, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, 7 andar, 04039-032, Vila Mariana, São Paulo, Brazilspa
dc.creator.affiliationCentro de Estudio de Productos Naturales, Facultad de Química, Universidad de La Habana, Zapata y G, 10400 La Habana, Cubaspa
dc.creator.affiliationUnité Molécules de Communication et Adaptation des Microorganismes, (MCAM, UMR 7245), Sorbonne Universités, Muséum National Histoire Naturelle, CNRS, CP 52, 57 Rue Cuvier, 75005 Paris, Francespa
dc.creator.affiliationCentro de Inmunología Molecular, Calle 15 esq. 216, Siboney, Playa, La Habana, Cubaspa
dc.creator.affiliationUniversidad de Medellín, Carrera 87 #30-65, Medellín, Colombiaspa
dc.creator.affiliationDepartamento de Biociências, Universidade Federal de São Paulo, R. Silva Jardim, 136, 11015-020, Vila Mathias, Santos, São Paulo, Brazilspa
dc.relation.ispartofesBioorganic and Medicinal Chemistryspa
dc.relation.ispartofesBioorganic and Medicinal Chemistry Volume 25, Issue 17, 2017, Pages 4628-4636spa
dc.relation.referencesAllary, M., Schrevel, J., & Florent, I. (2002). Properties, stage-dependent expression and localization of plasmodium falciparum M1 family zinc-aminopeptidase. Parasitology, 125(1), 1-10. doi:10.1017/S0031182002001828spa
dc.relation.referencesChandu, D., & Nandi, D. (2003). PepN is the major aminopeptidase in escherichia coli: Insights on substrate specificity and role during sodium-salicylate-induced stress. Microbiology, 149(12), 3437-3447.spa
dc.relation.referencesChen, L., Lin, Y. -., Peng, G., & Li, F. (2012). Structural basis for multifunctional roles of mammalian aminopeptidase N. Proceedings of the National Academy of Sciences of the United States of America, 109(44), 17966-17971. doi:10.1073/pnas.1210123109spa
dc.relation.referencesCunningham, E., Drag, M., Kafarski, P., & Bell, A. (2008). Chemical target validation studies of aminopeptidase in malaria parasites using α-aminoalkylphosphonate and phosphonopeptide inhibitors.Antimicrobial Agents and Chemotherapy, 52(9), 3221-3228. doi:10.1128/AAC.01327-07spa
dc.relation.referencesCURLEY, G. P., O'donovan, S. M., Mcnally, J., MullallY, M., O'hara, H., Troy, A., . . . Dalton, J. P. (1994). Aminopeptidases from plasmodium falciparum, plasmodium chabaudi chabaudi and plasmodium berghei. Journal of Eukaryotic Microbiology, 41(2), 119-123. doi:10.1111/j.1550-7408.1994.tb01483.xspa
dc.relation.referencesDa Cruz, L. N., Alves, E., Leal, M. T., Juliano, M. A., Rosenthal, P. J., Juliano, L., & Garcia, C. R. S. (2011). FRET peptides reveal differential proteolytic activation in intraerythrocytic stages of the malaria parasites plasmodium berghei and plasmodium yoelii. International Journal for Parasitology, 41(3), 363-372. doi:10.1016/j.ijpara.2010.10.009spa
dc.relation.referencesDalal, S., & Klemba, M. (2007). Roles for two aminopeptidases in vacuolar hemoglobin catabolism in plasmodium falciparum. Journal of Biological Chemistry, 282(49), 35978-35987. doi:10.1074/jbc.M703643200spa
dc.relation.referencesDemharter, A., Hörl, W., Herdtweck, E., & Ugi, I. (1996). Synthesis of chiral 1,1'-iminodicarboxylic acid derivatives from ~-amino acids, aldehydes, isocyanides, and alcohols by the diastereoselec-tire five-center-four-component reaction. Angewandte Chemie (International Edition in English), 35(2), 173-175.spa
dc.relation.referencesDeprez-Poulain, R., Flipo, M., Piveteau, C., Leroux, F., Dassonneville, S., Florent, I., . . . Deprez, B. (2012). Structure-activity relationships and blood distribution of antiplasmodial aminopeptidase-1 inhibitors.Journal of Medicinal Chemistry, 55(24), 10909-10917. doi:10.1021/jm301506hspa
dc.relation.referencesDesjardins, R. E., Canfield, C. J., Haynes, J. D., & Chulay, J. D. (1979). Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrobial Agents and Chemotherapy, 16(6), 710-718. doi:10.1128/AAC.16.6.710spa
dc.relation.referencesFlipo, M., Beghyn, T., Leroux, V., Florent, I., Deprez, B. P., & Deprez-Poulain, R. F. (2007). Novel selective inhibitors of the zinc plasmodial aminopeptidase PfA-M1 as potential antimalarial agents. Journal of Medicinal Chemistry, 50(6), 1322-1334. doi:10.1021/jm061169bspa
dc.relation.referencesFlipo, M., Florent, I., Grellier, P., Sergheraert, C., & Deprez-Poulain, R. (2003). Design, synthesis and antimalarial activity of novel, quinoline-based, zinc metallo-aminopeptidase inhibitors. Bioorganic and Medicinal Chemistry Letters, 13(16), 2659-2662. doi:10.1016/S0960-894X(03)00550-Xspa
dc.relation.referencesFlorent, I., Derhy, Z., Allary, M., Monsigny, M., Mayer, R., & Schrével, J. (1998). A plasmodium falciparum aminopeptidase gene belonging to the M1 family of zinc-metallopeptidases is expressed in erythrocytic stages. Molecular and Biochemical Parasitology, 97(1-2), 149-160. doi:10.1016/S0166-6851(98)00143-1spa
dc.relation.referencesGardiner, D. L., Trenholme, K. R., Skinner-Adams, T. S., Stack, C. M., & Dalton, J. P. (2006). Overexpression of leucyl aminopeptidase in plasmodium falciparum parasites: Target for the antimalarial activity of bestatin. Journal of Biological Chemistry, 281(3), 1741-1745. doi:10.1074/jbc.M508955200spa
dc.relation.referencesGardner, M. J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R. W., . . . Barrell, B. (2002). Genome sequence of the human malaria parasite plasmodium falciparum. Nature, 419(6906), 498-511. doi:10.1038/nature01097spa
dc.relation.referencesGavigan, C. S., Dalton, J. P., & Bell, A. (2001). The role of aminopeptidases in haemoglobin degradation in plasmodium falciparum-infected erythrocytes. Molecular and Biochemical Parasitology, 117(1), 37-48.spa
dc.relation.referencesGonzález-Bacerio, J., Osuna, J., Ponce, A., Fando, R., Figarella, K., Méndez, Y., . . . Chávez, M. D. L. Á. (2014). High-level expression in escherichia coli, purification and kinetic characterization of plasmodium falciparum M1-aminopeptidase. Protein Expression and Purification, 104, 103-114. doi:10.1016/j.pep.2014.08.002spa
dc.relation.referencesHarbut, M. B., Velmourougane, G., Dalal, S., Reiss, G., Whisstock, J. C., Onder, O., . . . Greenbaum, D. C. (2011). Bestatin-based chemical biology strategy reveals distinct roles for malaria M1- and M17-family aminopeptidases. Proceedings of the National Academy of Sciences of the United States of America, 108(34), E526-E534. doi:10.1073/pnas.1105601108spa
dc.relation.referencesLambros, C., & Vanderberg, J. P. (1979). Synchronization of plasmodium falciparum erythrocytic stages in culture. Journal of Parasitology, 65(3), 418-420.spa
dc.relation.referencesMartin, R. E., & Kirk, K. (2007). Transport of the essential nutrient isoleucine in human erythrocytes infected with the malaria parasite plasmodium falciparum. Blood, 109(5), 2217-2224. doi:10.1182/blood-2005-11-026963spa
dc.relation.referencesMcGowan, S., Oellig, C. A., Birru, W. A., Caradoc-Davies, T. T., Stack, C. M., Lowther, J., . . . Whisstock, J. C. (2010). Structure of the plasmodium falciparum M17 aminopeptidase and significance for the design of drugs targeting the neutral exopeptidases. Proceedings of the National Academy of Sciences of the United States of America, 107(6), 2449-2454. doi:10.1073/pnas.0911813107spa
dc.relation.referencesMcGowan, S., Porter, C. J., Lowther, J., Stack, C. M., Golding, S. J., Skinner-Adams, T. S., . . . Dalton, J. P. (2009). Structural basis for the inhibition of the essential plasmodium falciparum M1 neutral aminopeptidase. Proceedings of the National Academy of Sciences of the United States of America, 106(8), 2537-2542. doi:10.1073/pnas.0807398106spa
dc.relation.referencesMéndez, Y., Pérez-Labrada, K., González-Bacerio, J., Valdés, G., de los Chávez, M. Á., Osuna, J., . . . Rivera, D. G. (2014). Combinatorial multicomponent access to natural-products-inspired peptidomimetics: Discovery of selective inhibitors of microbial metallo-aminopeptidases. ChemMedChem, 9(10), 2351-2359. doi:10.1002/cmdc.201402140spa
dc.relation.referencesMusonda, C. C., Gut, J., Rosenthal, P. J., Yardley, V., Carvalho de Souza, R. C., & Chibale, K. (2006). Application of multicomponent reactions to antimalarial drug discovery. part 2: New antiplasmodial and antitrypanosomal 4-aminoquinoline γ- and δ-lactams via a 'catch and release' protocol. Bioorganic and Medicinal Chemistry, 14(16), 5605-5615. doi:10.1016/j.bmc.2006.04.035spa
dc.relation.referencesMusonda, C. C., Taylor, D., Lehman, J., Gut, J., Rosenthal, P. J., & Chibale, K. (2004). Application of multi-component reactions to antimalarial drug discovery. part 1: Parallel synthesis and antiplasmodial activity of new 4-aminoquinoline ugi adducts. Bioorganic and Medicinal Chemistry Letters, 14(15), 3901-3905. doi:10.1016/j.bmcl.2004.05.063spa
dc.relation.referencesNankya-Kitaka, M. F., Curley, G. P., Gavigan, C. S., Bell, A., & Dalton, J. P. (1998). Plasmodium chabaudi chabaudi and p. falciparum: Inhibition of aminopeptidase anti parasite growth by bestatin and nitrobestatin. Parasitology Research, 84(7), 552-558. doi:10.1007/s004360050447spa
dc.relation.referencesPaiardini, A., Bamert, R. S., Kannan-Sivaraman, K., Drinkwater, N., Mistry, S. N., Scammells, P. J., & McGowan, S. (2015). Screening the medicines for malaria venture "malaria box" against the plasmodium falciparum aminopeptidases, M1, M17 and M18. PLoS ONE, 10(2) doi:10.1371/journal.pone.0115859spa
dc.relation.referencesPoreba, M., McGowan, S., Skinner-Adams, T. S., Trenholme, K. R., Gardiner, D. L., Whisstock, J. C., . . . Drag, M. (2012). Fingerprinting the substrate specificity of M1 and M17 aminopeptidases of human malaria, plasmodium falciparum. PLoS ONE, 7(2) doi:10.1371/journal.pone.0031938spa
dc.relation.referencesRagheb, D., Dalal, S., Bompiani, K. M., Ray, W. K., & Klemba, M. (2011). Distribution and biochemical properties of an M1-family aminopeptidase in plasmodium falciparum indicate a role in vacuolar hemoglobin catabolism. Journal of Biological Chemistry, 286(31), 27255-27265. doi:10.1074/jbc.M111.225318spa
dc.relation.referencesSaliba, K. J., & Kirki, K. (1999). pH regulation in the intracellular malaria parasite, plasmodium falciparum. H+ extrusion via a V-type H+-ATPase. Journal of Biological Chemistry, 274(47), 33213-33219. doi:10.1074/jbc.274.47.33213spa
dc.relation.referencesScornik, O. A., & Botbol, V. (2001). Bestatin as an experimental tool in mammals. Current Drug Metabolism, 2(1), 67-85. doi:10.2174/1389200013338748spa
dc.relation.referencesScornik, O. A., & Botbol, V. (1997). Cellular uptake of 3H-bestatin in tissues of mice after its intravenous injection. Drug Metabolism and Disposition, 25(7), 798-804.spa
dc.relation.referencesSekine, K., Fujii, H., Abe, F., & Nishikawa, K. (2001). Augmentation of death ligand-induced apoptosis by aminopeptidase inhibitors in human solid tumor cell lines. International Journal of Cancer, 94(4), 485-491. doi:10.1002/ijc.1492spa
dc.relation.referencesSkinner-Adams, T. S., Peatey, C. L., Anderson, K., Trenholme, K. R., Krige, D., Brown, C. L., . . . Gardiner, D. L. (2012). The aminopeptidase inhibitor CHR-2863 is an orally bioavailable inhibitor of murine malaria. Antimicrobial Agents and Chemotherapy, 56(6), 3244-3249. doi:10.1128/AAC.06245-11spa
dc.relation.referencesSkinner-Adams, T. S., Stack, C. M., Trenholme, K. R., Brown, C. L., Grembecka, J., Lowther, J., . . . Dalton, J. P. (2010). Plasmodium falciparum neutral aminopeptidases: New targets for anti-malarials. Trends in Biochemical Sciences, 35(1), 53-61. doi:10.1016/j.tibs.2009.08.004spa
dc.relation.referencesStack, C. M., Lowther, J., Cunningham, E., Donnelly, S., Gardiner, D. L., Trenholme, K. R., . . . Dalton, J. P. (2007). Characterization of the plasmodium falciparum M17 leucyl aminopeptidase: A protease involved in amino acid regulation with potential for antimalarial drug development. Journal of Biological Chemistry, 282(3), 2069-2080. doi:10.1074/jbc.M609251200spa
dc.relation.referencesTrager, W., & Jensen, J. B. (1976). Human malaria parasites in continuous culture. Science, 193(4254), 673-675.spa
dc.relation.referencesTrott, O., & Olson, A. J. (2010). Software news and update AutoDock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455-461. doi:10.1002/jcc.21334spa
dc.relation.referencesUgi, I., Meyr, R., Fetzer, U., & Steinbrückner, C. (1959). Angew.Chem., 71, 386-388.spa
dc.relation.referencesUmezawa, H., Aoyagi, T., Suda, H., Hamada, M., & Takeuchi, T. (1976). Bestatin, an inhibitor of aminopeptidase B, produced by actinomycetes. Journal of Antibiotics, 29(1), 97-99. doi:10.7164/antibiotics.29.97spa
dc.relation.referencesVelmourougane, G., Harbut, M. B., Dalal, S., McGowan, S., Oellig, C. A., Meinhardt, N., . . . Greenbaum, D. C. (2011). Synthesis of new (-)-bestatin-based inhibitor libraries reveals a novel binding mode in the S1 pocket of the essential malaria M1 metalloaminopeptidase. Journal of Medicinal Chemistry, 54(6), 1655-1666. doi:10.1021/jm101227tspa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/other
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem