Mostrar el registro sencillo del ítem

dc.creatorDuque S.I.spa
dc.creatorOrozco-Duque A.spa
dc.creatorKremen V.spa
dc.creatorNovak D.spa
dc.creatorTobón C.spa
dc.creatorBustamante J.spa
dc.date.accessioned2017-12-19T19:36:43Z
dc.date.available2017-12-19T19:36:43Z
dc.date.created2017
dc.identifier.issn17468094
dc.identifier.urihttp://hdl.handle.net/11407/4268
dc.description.abstractSeveral approaches have been adopted for the identification of arrhythmogenic sources maintaining atrial fibrillation (AF). In this paper, we propose a classifier that discriminates between four classes of atrial electrogram (EGM). We delved into the relation between levels of fractionation in EGM signals and the fibrillation substrates in simulated episodes of chronic AF. Several feature extraction methods were used to calculate 92 features from 429 real EGM records acquired during radiofrequency ablation of chronic AF. We selected the optimal subset of features by using a genetic algorithm, followed by K-nearest neighbors (K-NN) classification into four levels of fractionation. Sensitivity of 0.90 and specificity of 0.97 were achieved. Subsequently, the results of the classification were extrapolated to signals of a 3D human atria model and a 2D model of atrial tissue. The 3D model simulated an episode of AF maintained by a rotor in the posterior wall of the left atrium and the 2D model simulated an AF episode with one stable rotor. We used the K-NN classifier trained on a given set of real EGM signals to detect a specific class of signals presenting the highest level of fractionation located near the rotor's vortex. This method needs to be tested on real clinical data to provide evidence that it can support ablation therapy procedures. © 2017 Elsevier Ltdeng
dc.language.isoeng
dc.publisherElsevier Ltdspa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85021174952&doi=10.1016%2fj.bspc.2017.06.005&partnerID=40&md5=e2419923ada30b09892ce3dd5ffceac5spa
dc.sourceScopusspa
dc.titleFeature subset selection and classification of intracardiac electrograms during atrial fibrillationspa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.contributor.affiliationDuque, S.I., Bioengineering Center, Universidad Pontificia Bolivariana, Medellín, Colombiaspa
dc.contributor.affiliationOrozco-Duque, A., Bioengineering Center, Universidad Pontificia Bolivariana, Medellín, Colombia, GI2B, Instituto Tecnológico Metropolitano, Medellín, Colombiaspa
dc.contributor.affiliationKremen, V., Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Prague, Czech Republicspa
dc.contributor.affiliationNovak, D., Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republicspa
dc.contributor.affiliationTobón, C., MATBIOM, Universidad de Medellín, Medellín, Colombiaspa
dc.contributor.affiliationBustamante, J., Bioengineering Center, Universidad Pontificia Bolivariana, Medellín, Colombiaspa
dc.identifier.doi10.1016/j.bspc.2017.06.005
dc.subject.keywordAtrial fibrillationeng
dc.subject.keywordElectroanatomical mappingeng
dc.subject.keywordFractionated electrogramseng
dc.subject.keywordK-NN classifiereng
dc.subject.keywordRotoreng
dc.subject.keywordAblationeng
dc.subject.keywordDiseaseseng
dc.subject.keywordFeature extractioneng
dc.subject.keywordGenetic algorithmseng
dc.subject.keywordNearest neighbor searcheng
dc.subject.keywordRotorseng
dc.subject.keywordText processingeng
dc.subject.keywordAtrial electrogramseng
dc.subject.keywordAtrial fibrillationeng
dc.subject.keywordElectrogramseng
dc.subject.keywordFeature extraction methodseng
dc.subject.keywordFeature subset selectioneng
dc.subject.keywordIntracardiac electrogramseng
dc.subject.keywordk-NN classifiereng
dc.subject.keywordRadio-frequency Ablationeng
dc.subject.keywordBiomedical signal processingeng
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.abstractSeveral approaches have been adopted for the identification of arrhythmogenic sources maintaining atrial fibrillation (AF). In this paper, we propose a classifier that discriminates between four classes of atrial electrogram (EGM). We delved into the relation between levels of fractionation in EGM signals and the fibrillation substrates in simulated episodes of chronic AF. Several feature extraction methods were used to calculate 92 features from 429 real EGM records acquired during radiofrequency ablation of chronic AF. We selected the optimal subset of features by using a genetic algorithm, followed by K-nearest neighbors (K-NN) classification into four levels of fractionation. Sensitivity of 0.90 and specificity of 0.97 were achieved. Subsequently, the results of the classification were extrapolated to signals of a 3D human atria model and a 2D model of atrial tissue. The 3D model simulated an episode of AF maintained by a rotor in the posterior wall of the left atrium and the 2D model simulated an AF episode with one stable rotor. We used the K-NN classifier trained on a given set of real EGM signals to detect a specific class of signals presenting the highest level of fractionation located near the rotor's vortex. This method needs to be tested on real clinical data to provide evidence that it can support ablation therapy procedures. © 2017 Elsevier Ltdeng
dc.creator.affiliationBioengineering Center, Universidad Pontificia Bolivariana, Medellín, Colombiaspa
dc.creator.affiliationGI2B, Instituto Tecnológico Metropolitano, Medellín, Colombiaspa
dc.creator.affiliationCzech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Prague, Czech Republicspa
dc.creator.affiliationDepartment of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republicspa
dc.creator.affiliationMATBIOM, Universidad de Medellín, Medellín, Colombiaspa
dc.relation.ispartofesBiomedical Signal Processing and Controlspa
dc.relation.ispartofesBiomedical Signal Processing and Control Volume 38, September 2017, Pages 182-190spa
dc.relation.referencesAlmeida, T. P., Salinet, J. L., Chu, G. S., Ng, G. A., & Schlindwein, F. S. (2013). Different definitions of complex fractionated atrial electrograms do not concur with the clinical perspective. Paper presented at the Computing in Cardiology, , 40 1055-1058.spa
dc.relation.referencesBarbaro, V., Bartolini, P., Calcagnini, G., Censi, F., Michelucci, A., & Morelli, S. (1999). Mapping the organization of human atrial fibrillation using a basket catheter. Paper presented at the Computers in Cardiology, 475-478.spa
dc.relation.referencesBenjamin, E. J., Wolf, P. A., D'Agostino, R. B., Silbershatz, H., Kannel, W. B., & Levy, D. (1998). Impact of atrial fibrillation on the risk of death: The framingham heart study. Circulation, 98(10), 946-952.spa
dc.relation.referencesBerenfeld, O., & Jalife, J. (2011). Complex fractionated atrial electrograms: Is this the beast to tame in atrial fibrillation? Circulation: Arrhythmia and Electrophysiology, 4(4), 426-428. doi:10.1161/CIRCEP.111.964841spa
dc.relation.referencesBotteron, G. W., & Smith, J. M. (1995). A technique for measurement of the extent of spatial organization of atrial activation during atrial fibrillation in the intact human heart. IEEE Transactions on Biomedical Engineering, 42(6), 579-586. doi:10.1109/10.387197spa
dc.relation.referencesCamm, A. J., Kirchhof, P., Lip, G. Y. H., Schotten, U., Savelieva, I., Ernst, S., . . . Zupan, I. (2010). Guidelines for the management of atrial fibrillation. European Heart Journal, 31(19), 2369-2429. doi:10.1093/eurheartj/ehq278spa
dc.relation.referencesChen, J., Lin, Y., Chen, L., Yu, J., Du, Z., Li, S., . . . Li, Z. (2014). A decade of complex fractionated electrograms catheter-based ablation for atrial fibrillation: Literature analysis, meta-analysis and systematic review. IJC Heart and Vessels, 4(1), 63-72. doi:10.1016/j.ijchv.2014.06.013spa
dc.relation.referencesCover, T. M., & Hart, P. E. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1), 21-27. doi:10.1109/TIT.1967.1053964spa
dc.relation.referencesEverett IV, T. H., Kok, L. -., Vaughn, R. H., Moorman, J. R., & Haines, D. E. (2001). Frequency domain algorithm for quantifying atrial fibrillation organization to increase defibrillation efficacy. IEEE Transactions on Biomedical Engineering, 48(9), 969-978. doi:10.1109/10.942586spa
dc.relation.referencesFaes, L., Nollo, G., Antolini, R., Gaita, F., & Ravelli, F. (2002). A method for quantifying atrial fibrillation organization based on wave-morphology similarity. IEEE Transactions on Biomedical Engineering, 49(12 I), 1504-1513. doi:10.1109/TBME.2002.805472spa
dc.relation.referencesGanesan, A. N., Kuklik, P., Lau, D. H., Brooks, A. G., Baumert, M., Lim, W. W., . . . Sanders, P. (2013). Bipolar electrogram shannon entropy at sites of rotational activation implications for ablation of atrial fibrillation. Circulation: Arrhythmia and Electrophysiology, 6(1), 48-57. doi:10.1161/CIRCEP.112.976654spa
dc.relation.referencesGoldberger, J. J., & Ng, J. (2010). Practical signal and image processing in clinical cardiology. Practical signal and image processing in clinical cardiology (pp. 1-400) doi:10.1007/978-1-84882-515-4spa
dc.relation.referencesHouben, R. P. M., De Groot, N. M. S., & Allessie, M. A. (2010). Analysis of fractionated atrial fibrillation electrograms by wavelet decomposition. IEEE Transactions on Biomedical Engineering, 57(6), 1388-1398. doi:10.1109/TBME.2009.2037974spa
dc.relation.referencesHouck, C., Joines, J., & Kay, M. (1995). A genetic algorithm for function optimization: A matlab implementation. NCSU-IE TR, 95(9).spa
dc.relation.referencesHunter, R. J., Diab, I., Tayebjee, M., Richmond, L., Sporton, S., Earley, M. J., & Schilling, R. J. (2011). Characterization of fractionated atrial electrograms critical for maintenance of atrial fibrillation a randomized, controlled trial of ablation strategies (the CFAE AF trial). Circulation: Arrhythmia and Electrophysiology, 4(5), 622-629. doi:10.1161/CIRCEP.111.962928spa
dc.relation.referencesHunter, R. J., Diab, I., Thomas, G., Duncan, E., Abrams, D., Dhinoja, M., . . . Schilling, R. J. (2009). Validation of a classification system to grade fractionation in atrial fibrillation and correlation with automated detection systems. Europace, 11(12), 1587-1596. doi:10.1093/europace/eup351spa
dc.relation.referencesJalife, J., Berenfeld, O., & Mansour, M. (2002). Mother rotors and fibrillatory conduction: A mechanism of atrial fibrillation. Cardiovascular Research, 54(2), 204-216. doi:10.1016/S0008-6363(02)00223-7spa
dc.relation.referencesKalifa, J., Tanaka, K., Zaitsev, A. V., Warren, M., Vaidyanathan, R., Auerbach, D., . . . Berenfeld, O. (2006). Mechanisms of wave fractionation at boundaries of high-frequency excitation in the posterior left atrium of the isolated sheep heart during atrial fibrillation. Circulation, 113(5), 626-633. doi:10.1161/CIRCULATIONAHA.105.575340spa
dc.relation.referencesKonings, K. T. S., Smeets, J. L. R. M., Penn, O. C., Wellens, H. J. J., & Allessie, M. A. (1997). Configuration of unipolar atrial electrograms during electrically induced atrial fibrillation in humans. Circulation, 95(5), 1231-1241.spa
dc.relation.referencesKřemen, V., Lhotská, L., MacAš, M., Čihák, R., Vančura, V., Kautzner, J., & Wichterle, D. (2008). A new approach to automated assessment of fractionation of endocardial electrograms during atrial fibrillation. Physiological Measurement, 29(12), 1371-1381. doi:10.1088/0967-3334/29/12/002spa
dc.relation.referencesLau, D. H., Maesen, B., Zeemering, S., Kuklik, P., Hunnik, A. V., Lankveld, T. A. R., . . . Schotten, U. (2015). Indices of bipolar complex fractionated atrial electrograms correlate poorly with each other and atrial fibrillation substrate complexity. Heart Rhythm, 12(7), 1415-1423. doi:10.1016/j.hrthm.2015.03.017spa
dc.relation.referencesLau, D. H., Maesen, B., Zeemering, S., Verheule, S., Crijns, H. J., & Schotten, U. (2012). Stability of complex fractionated atrial electrograms: A systematic review. Journal of Cardiovascular Electrophysiology, 23(9), 980-987. doi:10.1111/j.1540-8167.2012.02335.xspa
dc.relation.referencesNademanee, K., McKenzie, J., Kosar, E., Schwab, M., Sunsaneewitayakul, B., Vasavakul, T., . . . Ngarmukos, T. (2004). A new approach for catheter ablation of atrial fibrillation: Mapping of the electrophysiologic substrate. Journal of the American College of Cardiology, 43(11), 2044-2053. doi:10.1016/j.jacc.2003.12.054spa
dc.relation.referencesNarayan, S. M., Wright, M., Derval, N., Jadidi, A., Forclaz, A., Nault, I., . . . Hocini, M. (2011). Classifying fractionated electrograms in human atrial fibrillation using monophasic action potentials and activation mapping: Evidence for localized drivers, rate acceleration, and nonlocal signal etiologies. Heart Rhythm, 8(2), 244-253. doi:10.1016/j.hrthm.2010.10.020spa
dc.relation.referencesNg, J., Kadish, A. H., & Goldberger, J. J. (2007). Technical considerations for dominant frequency analysis. Journal of Cardiovascular Electrophysiology, 18(7), 757-764. doi:10.1111/j.1540-8167.2007.00810.xspa
dc.relation.referencesNollo, G., Marconcini, M., Faes, L., Bovolo, F., Ravelli, F., & Bruzzone, L. (2008). An automatic system for the analysis and classification of human atrial fibrillation patterns from intracardiac electrograms. IEEE Transactions on Biomedical Engineering, 55(9), 2275-2285. doi:10.1109/TBME.2008.923155spa
dc.relation.referencesOral, H., Chugh, A., Good, E., Wimmer, A., Dey, S., Gadeela, N., . . . Morady, F. (2007). Radiofrequency catheter ablation of chronic atrial fibrillation guided by complex electrograms. Circulation, 115(20), 2606-2612. doi:10.1161/CIRCULATIONAHA.107.691386spa
dc.relation.referencesOrozco-Duque, A., Bustamante, J., & Castellanos-Dominguez, G. (2016). Semi-supervised clustering of fractionated electrograms for electroanatomical atrial mapping. BioMedical Engineering Online, 15(1) doi:10.1186/s12938-016-0154-5spa
dc.relation.referencesOrozco-Duque, A., Novak, D., Kremen, V., & Bustamante, J. (2015). Multifractal analysis for grading complex fractionated electrograms in atrial fibrillation. Physiological Measurement, 36(11), 2269-2284. doi:10.1088/0967-3334/36/11/2269spa
dc.relation.referencesOrozco-Duque, A., Ugarte, J. P., Tobon, C., Saiz, J., & Bustamante, J. (2013). Approximate entropy can localize rotors, but not ectopic foci during chronic atrial fibrillation: A simulation study. Paper presented at the Computing in Cardiology, 40 903-906.spa
dc.relation.referencesPan, J., & Tompkins, W. J. (1985). A real-time QRS detection algorithm. IEEE Transactions on Biomedical Engineering, BME-32(3), 230-236. doi:10.1109/TBME.1985.325532spa
dc.relation.referencesPincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences of the United States of America, 88(6), 2297-2301.spa
dc.relation.referencesRavelli, F., & Masè, M. (2014). Computational mapping in atrial fibrillation: How the integration of signal-derived maps may guide the localization of critical sources. Europace, 16(5), 714-723. doi:10.1093/europace/eut376spa
dc.relation.referencesScherr, D., Dalal, D., Cheema, A., Cheng, A., Henrikson, C. A., Spragg, D., . . . Dong, J. (2007). Automated detection and characterization of complex fractionated atrial electrograms in human left atrium during atrial fibrillation. Heart Rhythm, 4(8), 1013-1020. doi:10.1016/j.hrthm.2007.04.021spa
dc.relation.referencesSchilling, C. (2012). Analysis of Atrial Electrograms, 17.spa
dc.relation.referencesSchilling, C., Keller, M., Scherr, D., Oesterlein, T., Haïssaguerre, M., Schmitt, C., . . . Luik, A. (2015). Fuzzy decision tree to classify complex fractionated atrial electrograms. Biomedizinische Technik, 60(3), 245-255. doi:10.1515/bmt-2014-0110spa
dc.relation.referencesSeitz, J., Horvilleur, J., Lacotte, J., Mouhoub, Y., Salerno, F., Moynagh, A., . . . Pisapia, A. (2013). Automated detection of complex fractionated atrial electrograms in substrate-based atrial fibrillation ablation: Better discrimination with a new setting of CARTO® algorithm. Journal of Atrial Fibrillation, 6(2), 23-30.spa
dc.relation.referencesTobón, C., Rodríguez, J. F., Ferrero, J. M., Hornero, F., & Saiz, J. (2012). Dominant frequency and organization index maps in a realistic three-dimensional computational model of atrial fibrillation. Europace, 14(SUPPL. 5), v25-v32. doi:10.1093/europace/eus268spa
dc.relation.referencesTobón, C., Ruiz-Villa, C. A., Heidenreich, E., Romero, L., Hornero, F., & Saiz, J. (2013). A three-dimensional human atrial model with fiber orientation. electrograms and arrhythmic activation patterns relationship. PLoS ONE, 8(2) doi:10.1371/journal.pone.0050883spa
dc.relation.referencesUgarte, J. P., Orozco-Duque, A., N, C. T., Kremen, V., Novak, D., Saiz, J., . . . Bustamante, J. (2014). Dynamic approximate entropy electroanatomic maps detect rotors in a simulated atrial fibrillation model. PLoS ONE, 9(12) doi:10.1371/journal.pone.0114577spa
dc.relation.referencesUgarte, J. P., Tobón, C., Orozco-Duque, A., Becerra, M. A., & Bustamante, J. (2015). Effect of the electrograms density in detecting and ablating the tip of the rotor during chronic atrial fibrillation: An in silico study. Europace, 17, ii97-ii104. doi:10.1093/europace/euv244spa
dc.relation.referencesWELLS, J. L.,Jr, KARP, R. B., KOUCHOUKOS, N. T., MACLEAN, W. A. H., JAMES, T. N., & WALDO, A. L. (1978). Characterization of atrial fibrillation in man: Studies following open heart surgery. Pacing and Clinical Electrophysiology, 1(4), 426-438. doi:10.1111/j.1540-8159.1978.tb03504.xspa
dc.relation.referencesZhang, D. (2005). Wavelet approach for ECG baseline wander correction and noise reduction. Paper presented at the Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, 7 VOLS 1212-1215.spa
dc.relation.referencesZlochiver, S., Yamazaki, M., Kalifa, J., & Berenfeld, O. (2008). Rotor meandering contributes to irregularity in electrograms during atrial fibrillation. Heart Rhythm, 5(6), 846-854. doi:10.1016/j.hrthm.2008.03.010spa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem