Mostrar el registro sencillo del ítem

dc.creatorPale V.spa
dc.creatorGiedraityte Z.spa
dc.creatorChen X.spa
dc.creatorLopez-Acevedo O.spa
dc.creatorTittonen I.spa
dc.creatorKarppinen M.spa
dc.date.accessioned2017-12-19T19:36:43Z
dc.date.available2017-12-19T19:36:43Z
dc.date.created2017
dc.identifier.issn20452322
dc.identifier.urihttp://hdl.handle.net/11407/4269
dc.description.abstractAtomic/molecular layer deposition (ALD/MLD) offers unique possibilities in the fabrication of inorganic-organic thin films with novel functionalities. Especially, incorporating nucleobases in the thin-film structures could open new avenues in the development of bio-electronic and photonic devices. Here we report an intense blue and widely excitation-dependent fluorescence in the visible region for ALD/MLD fabricated sodium-uracil thin films, where the crystalline network is formed from hydrogen-bonded uracil molecules linked via Na atoms. The excitation-dependent fluorescence is caused by the red-edge excitation shift (REES) effect taking place in the red-edge of the absorption spectrum, where the spectral relaxation occurs in continuous manner as demonstrated by the time-resolved measurements. © 2017 The Author(s).eng
dc.language.isoeng
dc.publisherNature Publishing Groupspa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85026758688&doi=10.1038%2fs41598-017-07456-6&partnerID=40&md5=3cc11f20b262a5fa60a9cba265a7b6dfspa
dc.sourceScopusspa
dc.titleExcitation-dependent fluorescence from atomic/molecular layer deposited sodium-uracil thin filmsspa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.contributor.affiliationPale, V., Department of Electronics and Nanoengineering, Aalto University, Aalto, Finlandspa
dc.contributor.affiliationGiedraityte, Z., Department of Chemistry and Materials Science, Aalto University, Aalto, Finlandspa
dc.contributor.affiliationChen, X., COMP Centre of Excellence in Computational Nanoscience, Department of Applied Physics, Aalto University, Aalto, Finlandspa
dc.contributor.affiliationLopez-Acevedo, O., COMP Centre of Excellence in Computational Nanoscience, Department of Applied Physics, Aalto University, Aalto, Finland, Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 # 30-65, Medellín, Colombiaspa
dc.contributor.affiliationTittonen, I., Department of Electronics and Nanoengineering, Aalto University, Aalto, Finlandspa
dc.contributor.affiliationKarppinen, M., Department of Chemistry and Materials Science, Aalto University, Aalto, Finlandspa
dc.identifier.doi10.1038/s41598-017-07456-6
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.abstractAtomic/molecular layer deposition (ALD/MLD) offers unique possibilities in the fabrication of inorganic-organic thin films with novel functionalities. Especially, incorporating nucleobases in the thin-film structures could open new avenues in the development of bio-electronic and photonic devices. Here we report an intense blue and widely excitation-dependent fluorescence in the visible region for ALD/MLD fabricated sodium-uracil thin films, where the crystalline network is formed from hydrogen-bonded uracil molecules linked via Na atoms. The excitation-dependent fluorescence is caused by the red-edge excitation shift (REES) effect taking place in the red-edge of the absorption spectrum, where the spectral relaxation occurs in continuous manner as demonstrated by the time-resolved measurements. © 2017 The Author(s).eng
dc.creator.affiliationDepartment of Electronics and Nanoengineering, Aalto University, Aalto, Finlandspa
dc.creator.affiliationDepartment of Chemistry and Materials Science, Aalto University, Aalto, Finlandspa
dc.creator.affiliationCOMP Centre of Excellence in Computational Nanoscience, Department of Applied Physics, Aalto University, Aalto, Finlandspa
dc.creator.affiliationDepartamento de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 # 30-65, Medellín, Colombiaspa
dc.relation.ispartofesScientific Reportsspa
dc.relation.ispartofesScientific Reports Volume 7, Issue 1, 1 December 2017spa
dc.relation.referencesAhvenniemi, E., & Karppinen, M. (2016). Atomic/molecular layer deposition: A direct gas-phase route to crystalline metal-organic framework thin films. Chemical Communications, 52(6), 1139-1142. doi:10.1039/c5cc08538aspa
dc.relation.referencesAhvenniemi, E., & Karppinen, M. (2016). In situ Atomic/Molecular layer-by-layer deposition of inorganic-organic coordination network thin films from gaseous precursors. Chemistry of Materials, 28(17), 6260-6265. doi:10.1021/acs.chemmater.6b02496spa
dc.relation.referencesAl‐Hassan, K. A., & El‐Bayoumi, M. A. (1987). Large edge‐excitation red shift for a merocyanine dye in poly(vinyl alcohol) polymer matrix. Journal of Polymer Science Part B: Polymer Physics, 25(3), 495-500. doi:10.1002/polb.1987.090250303spa
dc.relation.referencesAndréasson, J., Holmén, A., & Albinsson, B. (1999). The photophysical properties of the adenine chromophore. Journal of Physical Chemistry B, 103(44), 9782-9789.spa
dc.relation.referencesBandekar, J., & Zundel, G. (1982). High sensitivity of amide V bands in uracil and its derivatives to the strengths of hydrogen bonding. Spectrochimica Acta Part A: Molecular Spectroscopy, 38(7), 815-819. doi:10.1016/0584-8539(82)80073-1spa
dc.relation.referencesBecke, A. D. (1993). Density-functional thermochemistry. III. the role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652.spa
dc.relation.referencesBerger, O., Adler-Abramovich, L., Levy-Sakin, M., Grunwald, A., Liebes-Peer, Y., Bachar, M., . . . Gazit, E. (2015). Light-emitting self-assembled peptide nucleic acids exhibit both stacking interactions and watson-crick base pairing. Nature Nanotechnology, 10(4), 353-360. doi:10.1038/nnano.2015.27spa
dc.relation.referencesButler, R. S., Cohn, P., Tenzel, P., Abboud, K. A., & Castellano, R. K. (2009). Synthesis, photophysical behavior, and electronic structure of push - pull purines. Journal of the American Chemical Society, 131(2), 623-633. doi:10.1021/ja806348zspa
dc.relation.referencesCartwright, B. A., Goodgame, M., Johns, K. W., & Skapski, A. C. (1978). Strong metal-oxygen interaction in uracils. X-ray crystal structure of bis-(1,3-dimethyluracil)dichlorocopper(II). Biochemical Journal, 175(1), 337-339.spa
dc.relation.referencesCHARGAFF, E., LIPSHITZ, R., GREEN, C., & HODES, M. E. (1951). The composition of the deoxyribonucleic acid of salmon sperm. The Journal of Biological Chemistry, 192(1), 223-230.spa
dc.relation.referencesCragg, P. J. (1993). Supramolecular chemistry. From Biological Inspiration to Biomedical Applications, 260.spa
dc.relation.referencesCushing, S. K., Ding, W., Chen, G., Wang, C., Yang, F., Huang, F., & Wu, N. (2017). Excitation wavelength dependent fluorescence of graphene oxide controlled by strain. Nanoscale, 9(6), 2240-2245. doi:10.1039/c6nr08286fspa
dc.relation.referencesCushing, S. K., Li, M., Huang, F., & Wu, N. (2014). Origin of strong excitation wavelength dependent fluorescence of graphene oxide. ACS Nano, 8(1), 1002-1013. doi:10.1021/nn405843dspa
dc.relation.referencesDemchenko, A. P. (2002). The red-edge effects: 30 years of exploration. Luminescence, 17(1), 19-42. doi:10.1002/bio.671spa
dc.relation.referencesEnkovaara, J., Rostgaard, C., Mortensen, J. J., Chen, J., Dułak, M., Ferrighi, L., . . . Jacobsen, K. W. (2010). Electronic structure calculations with GPAW: A real-space implementation of the projector augmented-wave method. Journal of Physics Condensed Matter, 22(25) doi:10.1088/0953-8984/22/25/253202spa
dc.relation.referencesGalley, W. C., & Purkey, R. M. (1970). Role of heterogeneity of the solvation site in electronic spectra in solution. Proc.Natl.Acad.Sci.U.S.A., 67(3), 1116-1121.spa
dc.relation.referencesGiedraityte, Z., Lopez-Acevedo, O., Espinosa Leal, L. A., Pale, V., Sainio, J., Tripathi, T. S., & Karppinen, M. (2016). Three-dimensional uracil network with sodium as a linker. J.Phys.Chem.C, 120, 26342-26349.spa
dc.relation.referencesGomez, E. F., Venkatraman, V., Grote, J. G., & Steckl, A. J. (2015). Exploring the potential of nucleic acid bases in organic light emitting diodes. Advanced Materials, 27(46), 7552-7562. doi:10.1002/adma.201403532spa
dc.relation.referencesGoodgame, M., & Johns, K. W. (1977). Metal complexes of uracil and thymine. Journal of the Chemical Society, Dalton Transactions, (17), 1680-1683. doi:10.1039/DT9770001680spa
dc.relation.referencesGreco, N. J., & Tor, Y. (2007). Furan decorated nucleoside analogues as fluorescent probes: Synthesis, photophysical evaluation, and site-specific incorporation. Tetrahedron, 63(17), 3515-3527. doi:10.1016/j.tet.2007.01.073spa
dc.relation.referencesGrote, J. G., Heckman, E. M., Diggs, D. E., Hagen, J. A., Yaney, P. P., Steckl, A. J., . . . Kenneth Hopkins, F. (2005). DNA-based materials for electro-optic applications: Current status. Paper presented at the Proceedings of SPIE - the International Society for Optical Engineering, 5934 1-6. doi:10.1117/12.615206spa
dc.relation.referencesGustavsson, T., Bányász, Á., Lazzarotto, E., Markovitsi, D., Scalmani, G., Frisch, M. J., . . . Improta, R. (2006). Singlet excited-state behavior of uracil and thymine in aqueous solution: A combined experimental and computational study of 11 uracil derivatives. Journal of the American Chemical Society, 128(2), 607-619. doi:10.1021/ja056181sspa
dc.relation.referencesHagen, J. A., Li, W., Steckl, A. J., & Grote, J. G. (2006). Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer. Applied Physics Letters, 88(17) doi:10.1063/1.2197973spa
dc.relation.referencesHammond, G. S., Nonhebel, D. C., & Wu, C. -. S. (1963). Chelates of β-diketones. V. preparation and properties of chelates containing sterically hindered ligands. Inorganic Chemistry, 2(1), 73-76. doi:10.1021/ic50005a021spa
dc.relation.referencesHeckman, E. M., Hagen, J. A., Yaney, P. P., Grote, J. G., & Hopkins, F. K. (2005). Processing techniques for deoxyribonucleic acid: Biopolymer for photonics applications. Applied Physics Letters, 87(21), 1-3. doi:10.1063/1.2135205spa
dc.relation.referencesImprota, R., & Barone, V. (2004). Absorption and fluorescence spectra of uracil in the gas phase and in aqueous solution: A TD-DFT quantum mechanical study. Journal of the American Chemical Society, 126(44), 14320-14321. doi:10.1021/ja0460561spa
dc.relation.referencesIrimia-Vladu, M. (2014). "Green" electronics: Biodegradable and biocompatible materials and devices for sustainable future. Chemical Society Reviews, 43(2), 588-610. doi:10.1039/c3cs60235dspa
dc.relation.referencesIrimia-Vladu, M., Głowacki, E. D., Voss, G., Bauer, S., & Sariciftci, N. S. (2012). Green and biodegradable electronics. Materials Today, 15(7-8), 340-346. doi:10.1016/S1369-7021(12)70139-6spa
dc.relation.referencesIrimia-Vladu, M., Sariciftci, N. S., & Bauer, S. (2011). Exotic materials for bio-organic electronics. Journal of Materials Chemistry, 21(5), 1350-1361. doi:10.1039/c0jm02444aspa
dc.relation.referencesIrimia-Vladu, M., Troshin, P. A., Reisinger, M., Schwabegger, G., Ullah, M., Schwoediauer, R., . . . Sariciftci, N. S. (2010). Environmentally sustainable organic field effect transistors. Organic Electronics: Physics, Materials, Applications, 11(12), 1974-1990. doi:10.1016/j.orgel.2010.09.007spa
dc.relation.referencesIrimia-Vladu, M., Troshin, P. A., Reisinger, M., Shmygleva, L., Kanbur, Y., Schwabegger, G., . . . Bauer, S. (2010). Biocompatible and biodegradable materials for organic field-effect transistors. Advanced Functional Materials, 20(23), 4069-4076. doi:10.1002/adfm.201001031spa
dc.relation.referencesKasha, M. (1950). Characterization of electronic transitions in complex molecules. Discussions of the Faraday Society, 9, 14-19. doi:10.1039/DF9500900014spa
dc.relation.referencesKwon, Y. -., Lee, C. H., Choi, D. -., & Jin, J. -. (2009). Materials science of DNA. Journal of Materials Chemistry, 19(10), 1353-1380. doi:10.1039/b808030espa
dc.relation.referencesLagoja, I. M. (2005). Pyrimidine as constituent of natural biologically active compounds. Chemistry and Biodiversity, 2(1), 1-50. doi:10.1002/cbdv.200490173spa
dc.relation.referencesLakowicz, J. R. (2006). Principles of fluorescence spectroscopy. Principles of fluorescence spectroscopy (pp. 1-954) doi:10.1007/978-0-387-46312-4spa
dc.relation.referencesLarsen, A. H., Vanin, M., Mortensen, J. J., Thygesen, K. S., & Jacobsen, K. W. (2009). Localized atomic basis set in the projector augmented wave method. Physical Review B - Condensed Matter and Materials Physics, 80(19) doi:10.1103/PhysRevB.80.195112spa
dc.relation.referencesLee, C., Yang, W., & Parr, R. G. (1988). Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. doi:10.1103/PhysRevB.37.785spa
dc.relation.referencesLee, K. -., Cheng, W. -., Chen, C. -., Shyue, J. -., Nieh, C. -., Chou, C. -., . . . Lin, B. -. (2013). Excitation-dependent visible fluorescence in decameric nanoparticles with monoacylglycerol cluster chromophores. Nature Communications, 4 doi:10.1038/ncomms2563spa
dc.relation.referencesNisula, M., & Karppinen, M. (2016). Atomic/Molecular layer deposition of lithium terephthalate thin films as high rate capability li-ion battery anodes. Nano Letters, 16(2), 1276-1281. doi:10.1021/acs.nanolett.5b04604spa
dc.relation.referencesPale, V., Kauppinen, C., Selin, J., Sopanen, M., & Tittonen, I. (2016). Fluorescence-enhancing plasmonic silver nanostructures using azopolymer lithography. RSC Advances, 6(53), 48129-48136. doi:10.1039/c6ra04202cspa
dc.relation.referencesPale, V., Nikkonen, T., Helaja, J., & Tittonen, I. (2014). Light-harvesting zinc chlorin-poly(4-vinylpyridine) complexes. Paper presented at the 14th IEEE International Conference on Nanotechnology, IEEE-NANO 2014, 225-228. doi:10.1109/NANO.2014.6968052spa
dc.relation.referencesPale, V., Nikkonen, T., Vapaavuori, J., Kostiainen, M., Kavakka, J., Selin, J., . . . Helaja, J. (2013). Biomimetic zinc chlorin-poly(4-vinylpyridine) assemblies: Doping level dependent emission-absorption regimes. Journal of Materials Chemistry C, 1(11), 2166-2173. doi:10.1039/c3tc00499fspa
dc.relation.referencesParry, G. S. (1954). The crystal structure of uracil. Acta Crystallogr., 7 Retrieved from www.scopus.comspa
dc.relation.referencesRosemeyer, H. (2004). The chemodiversity of purine as a constituent of natural products. Chemistry and Biodiversity, 1(3), 361-401. doi:10.1002/cbdv.200490033spa
dc.relation.referencesSamanta, A. (2006). Dynamic stokes shift and excitation wavelength dependent fluorescence of dipolar molecules in room temperature ionic liquids. Journal of Physical Chemistry B, 110(28), 13704-13716. doi:10.1021/jp060441qspa
dc.relation.referencesSteckl, A. J. (2007). DNA - A new material for photonics? Nature Photonics, 1(1), 3-5. doi:10.1038/nphoton.2006.56spa
dc.relation.referencesStewart, R. F., & Jensen, L. H. (1967). Acta Crystallogr., 23, 1102-1105.spa
dc.relation.referencesSu, W., Bonnard, V., & Burley, G. A. (2011). DNA-templated photonic arrays and assemblies: Design principles and future opportunities. Chemistry - A European Journal, 17(29), 7982-7991. doi:10.1002/chem.201100924spa
dc.relation.referencesSundberg, P., & Karppinen, M. (2014). Organic and inorganic-organic thin film structures by molecular layer deposition: A review. Beilstein Journal of Nanotechnology, 5(1), 1104-1136. doi:10.3762/bjnano.5.123spa
dc.relation.referencesWalter, M., Häkkinen, H., Lehtovaara, L., Puska, M., Enkovaara, J., Rostgaard, C., & Mortensen, J. J. (2008). Time-dependent density-functional theory in the projector augmented-wave method. Journal of Chemical Physics, 128(24) doi:10.1063/1.2943138spa
dc.relation.referencesWASYLEWSKI, Z., KOŁOCZEK, H., WAŚNIOWSKA, A., & ŚIZOWSKA, K. (1992). Red‐edge excitation fluorescence measurements of several two‐tryptophan‐containing proteins. European Journal of Biochemistry, 206(1), 235-242. doi:10.1111/j.1432-1033.1992.tb16921.xspa
dc.relation.referencesZhang, H. ‐., Zhao, X., Ding, X., Paterson, A. H., & Wing, R. A. (1995). Preparation of megabase‐size DNA from plant nuclei. The Plant Journal, 7(1), 175-184. doi:10.1046/j.1365-313X.1995.07010175.xspa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem