Mostrar el registro sencillo del ítem

dc.creatorDíaz-García J.A.spa
dc.creatorCaro-Lopera F.J.spa
dc.date.accessioned2017-12-19T19:36:43Z
dc.date.available2017-12-19T19:36:43Z
dc.date.created2017
dc.identifier.issn19357524
dc.identifier.urihttp://hdl.handle.net/11407/4271
dc.description.abstractThe matrix variate elliptical generalization of [30] is presented in this work. The published Gaussian case is revised and modified. Then, new aspects of identifiability and consistent estimation of mean form and mean form difference are considered under elliptical laws. For example, instead of using the Euclidean distance matrix for the consistent estimates, exact formulae are derived for the moments of the matrix B = Xc(Xc)T; where Xcis the centered landmark matrix. Finally, a complete application in Biology is provided; it includes estimation, model selection and hypothesis testing. © 2017, Institute of Mathematical Statistics. All rights reserved.eng
dc.language.isoeng
dc.publisherInstitute of Mathematical Statisticsspa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85020382799&doi=10.1214%2f17-EJS1289&partnerID=40&md5=8e564bfa96c8a13ee5eafe6ebc225c38spa
dc.sourceScopusspa
dc.titleEstimation of mean form and mean form difference under elliptical lawsspa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.contributor.affiliationDíaz-García, J.A., Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Col. Buenavista, Saltillo, Coahuila, Mexicospa
dc.contributor.affiliationCaro-Lopera, F.J., Faculty of Basic Sciences, Universidad de Medellín, Medellín, Colombiaspa
dc.identifier.doi10.1214/17-EJS1289
dc.subject.keywordCoordinate free approacheng
dc.subject.keywordMatrix variate elliptical distributioneng
dc.subject.keywordMatrix variate Gaussian distributioneng
dc.subject.keywordNon-central singular Pseudo-Wishart distributioneng
dc.subject.keywordStatistical shape theoryeng
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.abstractThe matrix variate elliptical generalization of [30] is presented in this work. The published Gaussian case is revised and modified. Then, new aspects of identifiability and consistent estimation of mean form and mean form difference are considered under elliptical laws. For example, instead of using the Euclidean distance matrix for the consistent estimates, exact formulae are derived for the moments of the matrix B = Xc(Xc)T; where Xcis the centered landmark matrix. Finally, a complete application in Biology is provided; it includes estimation, model selection and hypothesis testing. © 2017, Institute of Mathematical Statistics. All rights reserved.eng
dc.creator.affiliationUniversidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Col. Buenavista, Saltillo, Coahuila, Mexicospa
dc.creator.affiliationFaculty of Basic Sciences, Universidad de Medellín, Medellín, Colombiaspa
dc.relation.ispartofesElectronic Journal of Statisticsspa
dc.relation.ispartofesElectronic Journal of Statistics Volume 11, Issue 1, 2017, Pages 2424-2460spa
dc.relation.referencesArnold, S. F. (1981). The Theory of Linear Models and Multivariate Analysis.spa
dc.relation.referencesBookstein, F. L. (1986). Size and shape spaces for landmark data in two dimensions. Statistical Science, 1(2), 181-222. doi:10.1214/ss/1177013696spa
dc.relation.referencesCaro-Lopera, F. J., & Díaz-García, J. A. (2012). Matrix kummer-pearson VII relation and polynomial pearson VII configuration density. Journal of the Iranian Statistical Society, 11(2), 217-230.spa
dc.relation.referencesCaro-Lopera, F. J., Díaz-García, J. A., & González-Farías, G. (2014). Inference in affine shape theory under elliptical models. Journal of the Korean Statistical Society, 43(1), 67-77. doi:10.1016/j.jkss.2013.05.004spa
dc.relation.referencesCaro-Lopera, F. J., Díaz-García, J. A., & González-Farías, G. (2010). Noncentral elliptical configuration density. Journal of Multivariate Analysis, 101(1), 32-43. doi:10.1016/j.jmva.2009.03.004spa
dc.relation.referencesCaro-Lopera, F. J., Leiva, V., & Balakrishnan, N. (2012). Connection between the hadamard and matrix products with an application to matrix-variate birnbaum-saunders distributions. Journal of Multivariate Analysis, 104(1), 126-139. doi:10.1016/j.jmva.2011.07.004spa
dc.relation.referencesDíaz-García, J. A. (1994). Contributions to the Theory of Wishart and Multivariate Elliptical Distributions.spa
dc.relation.referencesDíaz-García, J. A., & Caro-Lopera, F. J. (2013). Generalised shape theory via pseudo-wishart distribution. Sankhya: The Indian Journal of Statistics, 75 A(PART2), 253-276.spa
dc.relation.referencesDíaz-García, J. A., & Caro-Lopera, F. J. (2012). Generalised shape theory via SV decomposition I. Metrika, 75(4), 541-565. doi:10.1007/s00184-010-0341-5spa
dc.relation.referencesDíaz-García, J. A., & Caro-Lopera, F. J. (2012). Statistical theory of shape under elliptical models and singular value decompositions. Journal of Multivariate Analysis, 103(1), 77-92. doi:10.1016/j.jmva.2011.06.010spa
dc.relation.referencesDíaz-García, J. A., & Caro-Lopera, F. J. (2014). Statistical theory of shape under elliptical models via QR decomposition. Statistics, 48(2), 456-472. doi:10.1080/02331888.2013.801973spa
dc.relation.referencesDíaz-García, J. A., & González-Farías, G. (2005). Singular random matrix decompositions: Distributions. Journal of Multivariate Analysis, 94(1), 109-122. doi:10.1016/j.jmva.2004.08.003spa
dc.relation.referencesDíaz-García, J. A., & Gutiérrez Jáimez, R. (1996). Matrix differential calculus and moments of a random matrix elliptical. Serie Colecci´on“Estadística Multivariable Y Procesos Estocásticos.spa
dc.relation.referencesDíaz-García, J. A., Gutiérrez-Jáimez, R., & Ramos-Quiroga, R. (2003). Size-and-shape cone, shape disk and configuration densities for the elliptical models. Braz.J.Probab.Stat., 17, 135-146.spa
dc.relation.referencesDíaz-García, J. A., & Jáimez, R. G. (2006). Wishart and pseudo-wishart distributions under elliptical laws and related distributions in the shape theory context. Journal of Statistical Planning and Inference, 136(12), 4176-4193. doi:10.1016/j.jspi.2005.08.045spa
dc.relation.referencesDryden, I. L., Koloydenko, A., & Zhou, D. (2009). Non-euclidean statistics for covariance matrices, with applications to diffusion tensor imaging. Annals of Applied Statistics, 3(3), 1102-1123. doi:10.1214/09-AOAS249spa
dc.relation.referencesDryden, I. L., & Mardia, K. V. (1998). Statistical Shape Analysis.spa
dc.relation.referencesDutilleuel, P. (1999). The MLE algorithm for the matrix normal distribution. Journal of Statistical Computation and Simulation, 64(2), 105-123.spa
dc.relation.referencesFang, K. T., Kotz, S., & Ng, K. W. (1990). Symmetric multivariate and related distributions. Symmetric Multivariate and Related Distributions.spa
dc.relation.referencesFang, K. T., & Zhang, Y. T. (1990). Generalized multivariate analysis. Generalized Multivariate Analysis.spa
dc.relation.referencesGoodall, C. (1991). Procrustes methods in the statistical analysis of shape. J.R.Statist.Soc.B, 53(2), 285-339.spa
dc.relation.referencesGoodall, C. R., & Mardia, K. V. (1993). Multivariate aspects of shape theory. Ann.Statist., 21, 848-866.spa
dc.relation.referencesGupta, A. K., & Varga, T. (1993). Elliptically Contoured Models in Statistics.spa
dc.relation.referencesKendall, D. G. (1984). Shape manifolds, procrustean metrics, and complex projective spaces. Bulletin of the London Mathematical Society, 16(2), 81-121. doi:10.1112/blms/16.2.81spa
dc.relation.referencesKent, J. T. (1992). New directions in shape analysis. The Art of Statistical Science, 115-127.spa
dc.relation.referencesKhatri, C. G. (1968). Some results for the singular normal multivariate regression models. Sankhyā A, 30, 267-280.spa
dc.relation.referencesKoev, P., & Edelman, A. (2006). The efficient evaluation of the hypergeometric function of a matrix argument. Mathematics of Computation, 75(254), 833-846. doi:10.1090/S0025-5718-06-01824-2spa
dc.relation.referencesLe, H., & Kendall, D. G. (1993). The riemannian structure of euclidean shape spaces: A novel environment for statistics. Annals of Statistics, 21(3), 1225-1271.spa
dc.relation.referencesLele, S. (1993). Euclidean distance matrix analysis (EDMA): Estimation of mean form and mean form difference. Mathematical Geology, 25(5), 573-602. doi:10.1007/BF00890247spa
dc.relation.referencesLele, S. (1991). Some comments on coordinate‐free and scale‐invariant methods in morphometrics. American Journal of Physical Anthropology, 85(4), 407-417. doi:10.1002/ajpa.1330850405spa
dc.relation.referencesLele, S., & Richtsmeier, J. T. (1991). Euclidean distance matrix analysis: A coordinate‐free approach for comparing biological shapes using landmark data. American Journal of Physical Anthropology, 86(3), 415-427. doi:10.1002/ajpa.1330860307spa
dc.relation.referencesLele, S., & Richtsmeier, J. T. (1990). Statistical models in morphometrics: Are they realistic? Systematic Zoology, 39(1), 60-69. doi:10.2307/2992208spa
dc.relation.referencesMagnus, J. R., & Neudecker, H. (1979). The commutation matrix: Some properties and applications. Ann.Statist., 7(2), 381-394.spa
dc.relation.referencesMardia, K. V., & Dryden, I. L. (1989). The statistical analysis of shape data. Biometrika, 76(2), 271-281. doi:10.1093/biomet/76.2.271spa
dc.relation.referencesMood, A. M., Graybill, F. A., & Boes, D. C. (1974). Introduction to the Theory of Statistics.spa
dc.relation.referencesMuirhead, R. J. (1982). "Aspects of multivariate statistical theory". Aspects of Multivariate Statistical Theory.spa
dc.relation.referencesNadarajah, S. (2003). The kotz-type distribution with applications. Statistics, 37(4), 341-358. doi:10.1080/0233188031000078060spa
dc.relation.referencesRao, C. R. (1973). Linear Statistical Inference and its Applications.spa
dc.relation.referencesRichtsmeier, J. T., DeLeon, V. B., & Lele, S. R. (2002). The promise of geometric morphometrics. Yearbook of Physical Anthropology, 45, 63-91. doi:10.1002/ajpa.10174spa
dc.relation.referencesSawyer, P. (1997). Spherical functions on symmetric cones. Transactions of the American Mathematical Society, 349(9), 3569-3584.spa
dc.relation.referencesWalker, J. A. (2000). Ability of geometric morphometric methods to estimate a known covariance matrix. Systematic Biology, 49(4), 686-696.spa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem