dc.creator | Sanz-Vicario J.L. | spa |
dc.creator | Pérez-Torres J.F. | spa |
dc.creator | Moreno-Polo G. | spa |
dc.date.accessioned | 2017-12-19T19:36:43Z | |
dc.date.available | 2017-12-19T19:36:43Z | |
dc.date.created | 2017 | |
dc.identifier.issn | 24699926 | |
dc.identifier.uri | http://hdl.handle.net/11407/4272 | |
dc.description.abstract | We compute the entanglement between the electronic and vibrational motions in the simplest molecular system, the hydrogen molecular ion, considering the molecule as a bipartite system, electron and vibrational motion. For that purpose we compute an accurate total non-Born-Oppenheimer wave function in terms of a huge expansion using nonorthogonal B-spline basis sets that expand separately the electronic and nuclear wave functions. According to the Schmidt decomposition theorem for bipartite systems, widely used in quantum-information theory, it is possible to find a much shorter but equivalent expansion in terms of the natural orbitals or Schmidt bases for the electronic and nuclear half spaces. Here we extend the Schmidt decomposition theorem to the case in which nonorthogonal bases are used to span the partitioned Hilbert spaces. This extension is first illustrated with two simple coupled systems, the former without an exact solution and the latter exactly solvable. In these model systems of distinguishable coupled particles it is shown that the entanglement content does not increase monotonically with the excitation energy, but only within the manifold of states that belong to an existing excitation mode, if any. In the hydrogen molecular ion the entanglement content for each non-Born-Oppenheimer vibronic state is quantified through the von Neumann and linear entropies and we show that entanglement serves as a witness to distinguish vibronic states related to different Born-Oppenheimer molecular energy curves or electronic excitation modes. © 2017 American Physical Society. | eng |
dc.language.iso | eng | |
dc.publisher | American Physical Society | spa |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85028652124&doi=10.1103%2fPhysRevA.96.022503&partnerID=40&md5=f167f8f2d91e906abf6c02ab6b2bc1b0 | spa |
dc.source | Scopus | spa |
dc.title | Electronic-nuclear entanglement in H2+: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets | spa |
dc.type | Article | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.contributor.affiliation | Sanz-Vicario, J.L., Grupo de Física Atómica y Molecular, Instituto de Física, Universidad de Antioquia, Medellín, Colombia | spa |
dc.contributor.affiliation | Pérez-Torres, J.F., Facultad de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia | spa |
dc.contributor.affiliation | Moreno-Polo, G., Grupo de Física Atómica y Molecular, Instituto de Física, Universidad de Antioquia, Medellín, Colombia | spa |
dc.identifier.doi | 10.1103/PhysRevA.96.022503 | |
dc.subject.keyword | Domain decomposition methods | eng |
dc.subject.keyword | Excited states | eng |
dc.subject.keyword | Geometry | eng |
dc.subject.keyword | Information theory | eng |
dc.subject.keyword | Ion sources | eng |
dc.subject.keyword | Quantum optics | eng |
dc.subject.keyword | Quantum theory | eng |
dc.subject.keyword | Wave functions | eng |
dc.subject.keyword | Electronic excitation | eng |
dc.subject.keyword | Hydrogen molecular ion | eng |
dc.subject.keyword | Non-Born Oppenheimer | eng |
dc.subject.keyword | Nonorthogonal basis | eng |
dc.subject.keyword | Nuclear wave functions | eng |
dc.subject.keyword | Quantum information theory | eng |
dc.subject.keyword | Schmidt decomposition | eng |
dc.subject.keyword | Vibrational motions | eng |
dc.subject.keyword | Quantum entanglement | eng |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.abstract | We compute the entanglement between the electronic and vibrational motions in the simplest molecular system, the hydrogen molecular ion, considering the molecule as a bipartite system, electron and vibrational motion. For that purpose we compute an accurate total non-Born-Oppenheimer wave function in terms of a huge expansion using nonorthogonal B-spline basis sets that expand separately the electronic and nuclear wave functions. According to the Schmidt decomposition theorem for bipartite systems, widely used in quantum-information theory, it is possible to find a much shorter but equivalent expansion in terms of the natural orbitals or Schmidt bases for the electronic and nuclear half spaces. Here we extend the Schmidt decomposition theorem to the case in which nonorthogonal bases are used to span the partitioned Hilbert spaces. This extension is first illustrated with two simple coupled systems, the former without an exact solution and the latter exactly solvable. In these model systems of distinguishable coupled particles it is shown that the entanglement content does not increase monotonically with the excitation energy, but only within the manifold of states that belong to an existing excitation mode, if any. In the hydrogen molecular ion the entanglement content for each non-Born-Oppenheimer vibronic state is quantified through the von Neumann and linear entropies and we show that entanglement serves as a witness to distinguish vibronic states related to different Born-Oppenheimer molecular energy curves or electronic excitation modes. © 2017 American Physical Society. | eng |
dc.creator.affiliation | Grupo de Física Atómica y Molecular, Instituto de Física, Universidad de Antioquia, Medellín, Colombia | spa |
dc.creator.affiliation | Facultad de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia | spa |
dc.creator.affiliation | Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia | spa |
dc.relation.ispartofes | Physical Review A | spa |
dc.relation.ispartofes | Physical Review A Volume 96, Issue 2, 2 August 2017 | spa |
dc.relation.references | Bachau, H., Cormier, E., Decleva, P., Hansen, J. E., & Martín, F. (2001). Applications of B-splines in atomic and molecular physics. Reports on Progress in Physics, 64(12), 1815-1942. doi:10.1088/0034-4885/64/12/205 | spa |
dc.relation.references | Bhatti, M. I., & Perger, W. F. (2006). Solutions of the radial dirac equation in a B-polynomial basis. Journal of Physics B: Atomic, Molecular and Optical Physics, 39(3), 553-558. doi:10.1088/0953-4075/39/3/008 | spa |
dc.relation.references | Born, M., & Huang, K. (1954). Dynamical Theory of Crystal Lattices, | spa |
dc.relation.references | Bouvrie, P. A., Majtey, A. P., Tichy, M. C., Dehesa, J. S., & Plastino, A. R. (2014). Eur.Phys.J., 68, 346. | spa |
dc.relation.references | Brosoio, M., Decleva, P., & Lisini, A. (1992). Accurate variational determination of continuum wavefunctions by a one-centre expansion in a spline basis. an application to (equation found) and heh2+photoionization. Journal of Physics B: Atomic, Molecular and Optical Physics, 25(15), 3345-3356. doi:10.1088/0953-4075/25/15/015 | spa |
dc.relation.references | De Boor, C. (1978). A Practical Guide to Splines. | spa |
dc.relation.references | Gerry, C. C., & Knight, P. L. (2005). Introductory Quantum Optics. | spa |
dc.relation.references | Gidopoulos, N. I., & Gross, E. K. U. (2014). Electronic non-adiabatic states: Towards a density functional theory beyond the born-oppenheimer approximation. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2011) doi:10.1098/rsta.2013.0059 | spa |
dc.relation.references | Haxton, D. J., Lawler, K. V., & McCurdy, C. W. (2011). Multiconfiguration time-dependent hartree-fock treatment of electronic and nuclear dynamics in diatomic molecules. Physical Review A - Atomic, Molecular, and Optical Physics, 83(6) doi:10.1103/PhysRevA.83.063416 | spa |
dc.relation.references | Hernandez, V., Roman, J. E., & Vidal, V. (2005). SLEPC: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Transactions on Mathematical Software, 31(3), 351-362. doi:10.1145/1089014.1089019 | spa |
dc.relation.references | Hunter, G. (1975). Conditional probability amplitudes in wave mechanics. International Journal of Quantum Chemistry, 9(2), 237-242. doi:10.1002/qua.560090205 | spa |
dc.relation.references | Izmaylov, A. F., & Franco, I. (2017). Entanglement in the born-oppenheimer approximation. Journal of Chemical Theory and Computation, 13(1), 20-28. doi:10.1021/acs.jctc.6b00959 | spa |
dc.relation.references | Karr, J. P., & Hilico, L. (2006). High accuracy results for the energy levels of the molecular ions H + 2, D+ 2 and HD+, up to J ≤ 2. Journal of Physics B: Atomic, Molecular and Optical Physics, 39(8), 2095-2105. doi:10.1088/0953-4075/39/8/024 | spa |
dc.relation.references | Landau, L. D., & Lifshitz, E. M. (1977). Quantum Mechanics. | spa |
dc.relation.references | Löwdin, P. -. (1950). On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals. The Journal of Chemical Physics, 18(3), 365-375. | spa |
dc.relation.references | Martín, F. (1999). Ionization and dissociation using B-splines: Photoionization of the hydrogen molecule. Journal of Physics B: Atomic, Molecular and Optical Physics, 32(16), R197-R231. doi:10.1088/0953-4075/32/16/201 | spa |
dc.relation.references | McKemmish, L. K., McKenzie, R. H., Hush, N. S., & Reimers, J. R. (2015). Electron-vibration entanglement in the born-oppenheimer description of chemical reactions and spectroscopy. Physical Chemistry Chemical Physics, 17(38), 24666-24682. doi:10.1039/c5cp02239h | spa |
dc.relation.references | McKemmish, L. K., McKenzie, R. H., Hush, N. S., & Reimers, J. R. (2011). Quantum entanglement between electronic and vibrational degrees of freedom in molecules. Journal of Chemical Physics, 135(24) doi:10.1063/1.3671386 | spa |
dc.relation.references | Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Information. | spa |
dc.relation.references | Pérez-Torres, J. F. (2013). Electronic flux densities in vibrating H2+ in terms of vibronic eigenstates. Physical Review A - Atomic, Molecular, and Optical Physics, 87(6) doi:10.1103/PhysRevA.87.062512 | spa |
dc.relation.references | Restrepo Cuartas, J. P., & Sanz-Vicario, J. L. (2015). Information and entanglement measures applied to the analysis of complexity in doubly excited states of helium. Physical Review A - Atomic, Molecular, and Optical Physics, 91(5) doi:10.1103/PhysRevA.91.052301 | spa |
dc.relation.references | Schmidt, E. (1907). Zur theorie der linearen und nichtlinearen integralgleichungen - I. teil: Entwicklung willkürlicher funktionen nach systemen vorgeschriebener. Mathematische Annalen, 63(4), 433-476. doi:10.1007/BF01449770 | spa |
dc.relation.references | Szabo, A., & Ostlund, N. S. (1989). Modern Quantum Chemistry. | spa |
dc.relation.references | Vatasescu, M. (2013). Entanglement between electronic and vibrational degrees of freedom in a laser-driven molecular system. Physical Review A - Atomic, Molecular, and Optical Physics, 88(6) doi:10.1103/PhysRevA.88.063415 | spa |
dc.relation.references | Vatasescu, M. (2015). Measures of electronic-vibrational entanglement and quantum coherence in a molecular system. Physical Review A, 92(4) doi:10.1103/PhysRevA.92.042323 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | spa |
dc.identifier.instname | instname:Universidad de Medellín | spa |