Mostrar el registro sencillo del ítem

dc.creatorOspina D.A.spa
dc.creatorMora-Ramos M.E.spa
dc.creatorDuque C.A.spa
dc.date.accessioned2017-12-19T19:36:43Z
dc.date.available2017-12-19T19:36:43Z
dc.date.created2017
dc.identifier.isbn15334880
dc.identifier.urihttp://hdl.handle.net/11407/4273
dc.description.abstractThe properties of the electronic structure of a finite-barrier semiconductor multiple quantum well are investigated taking into account the effects of the application of a static electric field and hydrostatic pressure. With the information of the allowed quasi-stationary energy states, the coefficients of linear and nonlinear optical absorption and of the relative refractive index change associated to transitions between allowed subbands are calculated with the use of a two-level scheme for the density matrix equation of motion and the rotating wave approximation. It is noticed that the hydrostatic pressure enhances the amplitude of the nonlinear contribution to the optical response of the multiple quantum well, whilst the linear one becomes reduced. Besides, the calculated coefficients are blueshifted due to the increasing of the applied electric field, and shows systematically dependence upon the hydrostatic pressure. The comparison of these results with those related with the consideration of a stationary spectrum of states in the heterostructure-obtained by placing infinite confining barriers at a conveniently far distance-shows essential differences in the pressure-induced effects in the sense of resonant frequency shifting as well as in the variation of the amplitudes of the optical responses. Copyright © 2017 American Scientific Publishers All rights reserved.eng
dc.language.isoeng
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85010039311&doi=10.1166%2fjnn.2017.12567&partnerID=40&md5=ce56378298744fab3f21e7cdf5260203spa
dc.sourceScopusspa
dc.titleEffects of hydrostatic pressure and electric field on the electron-related optical properties in GaAs multiple quantum wellspa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.contributor.affiliationOspina, D.A., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia, Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiaspa
dc.contributor.affiliationMora-Ramos, M.E., Centro de Investigación en Ciencias, Instituto de Facultad de Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos, Mexicospa
dc.contributor.affiliationDuque, C.A., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombiaspa
dc.identifier.doi10.1166/jnn.2017.12567
dc.subject.keywordElectric fieldeng
dc.subject.keywordHydrostatic pressureeng
dc.subject.keywordMultiple quantum welleng
dc.subject.keywordOptical propertieseng
dc.subject.keywordElectric fieldseng
dc.subject.keywordElectromagnetic wave absorptioneng
dc.subject.keywordElectronic structureeng
dc.subject.keywordEquations of motioneng
dc.subject.keywordHydraulicseng
dc.subject.keywordHydrostatic pressureeng
dc.subject.keywordLight absorptioneng
dc.subject.keywordMatrix algebraeng
dc.subject.keywordNatural frequencieseng
dc.subject.keywordNonlinear equationseng
dc.subject.keywordNonlinear opticseng
dc.subject.keywordOptical propertieseng
dc.subject.keywordQuantum opticseng
dc.subject.keywordRefractive indexeng
dc.subject.keywordSemiconducting indium compoundseng
dc.subject.keywordDensity matrix equationseng
dc.subject.keywordGaas multiple quantum wellseng
dc.subject.keywordNonlinear contributionseng
dc.subject.keywordNonlinear optical absorptioneng
dc.subject.keywordPressure induced effectseng
dc.subject.keywordRefractive index changeseng
dc.subject.keywordRotating wave approximationseng
dc.subject.keywordStatic electric fieldseng
dc.subject.keywordSemiconductor quantum wellseng
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.abstractThe properties of the electronic structure of a finite-barrier semiconductor multiple quantum well are investigated taking into account the effects of the application of a static electric field and hydrostatic pressure. With the information of the allowed quasi-stationary energy states, the coefficients of linear and nonlinear optical absorption and of the relative refractive index change associated to transitions between allowed subbands are calculated with the use of a two-level scheme for the density matrix equation of motion and the rotating wave approximation. It is noticed that the hydrostatic pressure enhances the amplitude of the nonlinear contribution to the optical response of the multiple quantum well, whilst the linear one becomes reduced. Besides, the calculated coefficients are blueshifted due to the increasing of the applied electric field, and shows systematically dependence upon the hydrostatic pressure. The comparison of these results with those related with the consideration of a stationary spectrum of states in the heterostructure-obtained by placing infinite confining barriers at a conveniently far distance-shows essential differences in the pressure-induced effects in the sense of resonant frequency shifting as well as in the variation of the amplitudes of the optical responses. Copyright © 2017 American Scientific Publishers All rights reserved.eng
dc.creator.affiliationGrupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombiaspa
dc.creator.affiliationDepartamento de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiaspa
dc.creator.affiliationCentro de Investigación en Ciencias, Instituto de Facultad de Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos, Mexicospa
dc.relation.ispartofesJournal of Nanoscience and Nanotechnologyspa
dc.relation.ispartofesJournal of Nanoscience and Nanotechnology Volume 17, Issue 2, 2017, Pages 1247-1254spa
dc.relation.referencesAhn, D., & Chuang, S. L. (1988). Electric-field dependence of the intersubband optical absorption in a semiconductor quantum well. Superlattices and Microstructures, 4(2), 153-157. doi:10.1016/0749-6036(88)90028-6spa
dc.relation.referencesBaghramyan, H. M., Barseghyan, M. G., Kirakosyan, A. A., Restrepo, R. L., Mora-Ramos, M. E., & Duque, C. A. (2014). Donor impurity-related linear and nonlinear optical absorption coefficients in GaAs/Ga1-xAlxAs concentric double quantum rings: Effects of geometry, hydrostatic pressure, and aluminum concentration. Journal of Luminescence, 145, 676-683. doi:10.1016/j.jlumin.2013.08.061spa
dc.relation.referencesBarseghyan, M. G., Restrepo, R. L., Mora-Ramos, M. E., Kirakosyan, A. A., & Duque, C. A. (2012). Nanoscale Res.Lett., 7.spa
dc.relation.referencesBenDaniel, D. J., & Duke, C. B. (1966). Space-charge effects on electron tunneling. Physical Review, 152(2), 683-692. doi:10.1103/PhysRev.152.683spa
dc.relation.referencesBerglund, C. N., & Jayaraman, A. (1969). Hydrostatic-pressure dependence of the electronic properties of VO2 near the semiconductor-metal transition temperature. Physical Review, 185(3), 1034-1039. doi:10.1103/PhysRev.185.1034spa
dc.relation.referencesBetancourt-Riera, R., Betancourt-Riera, R., Riera, R., & Rosas, R. (2012). Electron raman scattering in asymmetrical multiple quantum wells system with an external electric field. Physica E: Low-Dimensional Systems and Nanostructures, 44(7-8), 1152-1157. doi:10.1016/j.physe.2012.01.007spa
dc.relation.referencesButov, L. V., Zrenner, A., Abstreiter, G., Petinova, A. V., & Eberl, K. (1995). Phys.Rev.B, 52spa
dc.relation.referencesEnderlein, R., Holz, T., & Gondar, J. L. (1989). The quantum well in an electric field A density of states approach. Physica Status Solidi (b), 156(1), 259-273. doi:10.1002/pssb.2221560126spa
dc.relation.referencesEsquivias, I., Weisser, S., Ralston, J. D., Gallagher, D. F. G., Larkins, E. C., Tasker, P. J., . . . Fleissner, J. (1992). IVB-1 high-speed GaAs/AlGaAs multiple-quantum-well lasers: Design and characterization. IEEE Transactions on Electron Devices, 39(11), 2660-2661. doi:10.1109/16.163524spa
dc.relation.referencesFerreira, R., & Bastard, G. (1988). Wannier-stark levels in the valence band of semiconductor multiple quantum wells. Physical Review B, 38(12), 8406-8411. doi:10.1103/PhysRevB.38.8406spa
dc.relation.referencesFranssen, G., Suski, T., Perlin, P., Bohdan, R., Bercha, A., Adamiec, P., . . . Grzegory, I. (2005). Screening of built-in electric fields in group III-nitride laser diodes observed by means of hydrostatic pressure. Paper presented at the Physica Status Solidi C: Conferences, , 2(3) 1019-1022. doi:10.1002/pssc.200460612spa
dc.relation.referencesFranssen, G., Suski, T., Perlin, P., Bohdan, R., Bercha, A., Trzeciakowski, W., . . . Grzegory, I. (2006). Screening of polarization induced electric fields in blue/violet InGaN/GaN laser diodes by si doping in quantum barriers revealed by hydrostatic pressure. Physica Status Solidi (C) Current Topics in Solid State Physics, 3, 2303-2306. doi:10.1002/pssc.200565317spa
dc.relation.referencesGao, X., Souza, M. D., Botez, D., & Knezevic, I. (2007). J.Appl.Phys., 102.spa
dc.relation.referencesGhatak, A. K., Goyal, I. C., & Gallawa, R. L. (1990). Mean lifetime calculations of quantum well structures: A rigorous analysis. IEEE Journal of Quantum Electronics, 26(2), 305-310. doi:10.1109/3.44962spa
dc.relation.referencesGoossen, K. W., Cunningham, J. E., & Jan, W. Y. (1994). Electroabsorption in ultranarrow-barrier GaAs/AlGaAs multiple quantum well modulators. Applied Physics Letters, 64(9), 1071-1073. doi:10.1063/1.110935spa
dc.relation.referencesGorczyca, I., Suski, T., Christensen, N. E., & Svane, A. (2012). Appl.Phys.Lett., 101.spa
dc.relation.referencesGrahn, H. T., Haug, R. J., Müller, W., & Ploog, K. (1991). Electric-field domains in semiconductor superlattices: A novel system for tunneling between 2D systems. Physical Review Letters, 67(12), 1618-1621. doi:10.1103/PhysRevLett.67.1618spa
dc.relation.referencesGriebl, E., Kerner, W., Haserer, B., Reisinger, T., Hahn, B., & Gebhardt, W. (1996). Absorption and photoluminescence of ZnSe/ZnxCd1-xSe superlattices and quantum wells under hydrostatic pressure. Acta Physica Polonica A, 90(5), 1017-1021. doi:10.12693/APhysPolA.90.1017spa
dc.relation.referencesJin, S. R., Ahmad, C. N., Sweeney, S. J., Adams, A. R., Murdin, B. N., Page, H., . . . Tomic, S. (2006). J.Appl.Phys., 89.spa
dc.relation.referencesJirauschek, C., & Kubis, T. (2014). Appl.Phys.Rev., 1.spa
dc.relation.referencesKohandani, R., Zandi, A., & Kaatuzian, H. (2014). Appl.Opt., 53, 1228.spa
dc.relation.referencesLeburton, J. P., & Kahen, K. (1985). GAAS-ALGAS superlattice band structure under hydrostatic pressure: An analysis based on the envelope function approximation. Superlattices and Microstructures, 1(1), 49-53. doi:10.1016/0749-6036(85)90028-Xspa
dc.relation.referencesLu, S. L., Schrottke, L., Teitsworth, S. W., Hey, R., & Grahn, H. T. (2006). Phys.Rev.B, 73.spa
dc.relation.referencesLu, X., Wienold, M., Schrottke, L., Biermann, K., & Grahn, H. T. (2013). J.Appl.Phys., 113.spa
dc.relation.referencesLuc-Koenig, E., & Bachelier, A. (1980). Systematic theoretical study of the stark spectrum of atomic hydrogen. II. density of oscillator strengths. comparison with experimental absorption spectra in solid-state and atomic physics. Journal of Physics B: Atomic and Molecular Physics, 13(9), 1769-1790. doi:10.1088/0022-3700/13/9/010spa
dc.relation.referencesMora, M. E., Perez, R., & Sommers, C. B. (1985). TRANSFER MATRIX IN ONE DIMENSIONAL PROBLEMS. Journal De Physique Paris, 46(7), 1021-1026.spa
dc.relation.referencesMorifuji, M., Nishikawa, Y., Hamaguchi, C., & Fujii, T. (1992). Electronic band structure of superlattices under a uniform electric field and wannier-stark effect. Semiconductor Science and Technology, 7(8), 1047-1051. doi:10.1088/0268-1242/7/8/004spa
dc.relation.referencesPanda, S., & Panda, B. K. (2001). Analytic methods for field induced tunneling in quantum wells with arbitrary potential profiles. Pramana - Journal of Physics, 56(6), 809-822.spa
dc.relation.referencesPaspalakis, E., Boviatsis, J., & Baskoutas, S. (2013). Effects of probe field intensity in nonlinear optical processes in asymmetric semiconductor quantum dots. Journal of Applied Physics, 114(15) doi:10.1063/1.4825320spa
dc.relation.referencesPatel, D., Menoni, C. S., Temkin, H., Tome, C., Logan, R. A., & Coblentz, D. (1993). Optical properties of semiconductor lasers with hydrostatic pressure. Journal of Applied Physics, 74(1), 737-739. doi:10.1063/1.355242spa
dc.relation.referencesReyes-Gómez, E., Raigoza, N., & Oliveira, L. E. (2013). Europhys.Lett., 104.spa
dc.relation.referencesRitze, M., Horing, N. J. M., & Enderlein, R. (1993). Phys.Rev.B, 47.spa
dc.relation.referencesSatpathy, S., Chandrasekhar, M., Chandrasekhar, H. R., & Venkateswaran, U. (1991). Phys.Rev.B, 44.spa
dc.relation.referencesSchönhöbela, A. M., Girón, J. A., & Porras-Montenegro, N. (2014). J.Phys.: Conf.Ser., 480.spa
dc.relation.referencesTrallero Giner, C., & López Gondar, J. (1986). Exact wave functions and energy levels for a quantum well with an applied electric field. Physica B+C, 138(3), 287-294. doi:10.1016/0378-4363(86)90009-4spa
dc.relation.referencesVenkateswaran, U., Chandrasekhar, M., Chandrasekhar, H. R., Vojak, B. A., Chambers, F. A., & Meese, J. M. (1987). High pressure study of GaAsAlxGa1-xAs quantum wells at low temperatures. Superlattices and Microstructures, 3(3), 217-223. doi:10.1016/0749-6036(87)90061-9spa
dc.relation.referencesVina, L., Mendez, E. E., Wang, W. I., Chang, L. L., & Esaki, L. (1987). Stark shifts in gaas/gaalas quantum wells studied by photoluminescence spectroscopy. Journal of Physics C: Solid State Physics, 20(18), 2803-2815. doi:10.1088/0022-3719/20/18/016spa
dc.relation.referencesvon Plessen, G., Meier, T., Koch, M., Feldmann, J., Koch, S. W., Thomas, P., . . . Kopf, R. F. (1995). Electric-field-induced exciton ionization in a GaAs/AlGaAs superlattice. Il Nuovo Cimento D, 17(11-12), 1759-1762. doi:10.1007/BF02457276spa
dc.relation.referencesWang, L., Jia, W., Tang, R., Wang, Y., Zhou, J., Ge, W., & Wang, B. (1990). High pressure behavior of electronic states in GaAs/Ga1-xAlxAs multiple quantum wells. Superlattices and Microstructures, 7(2), 175-178. doi:10.1016/0749-6036(90)90133-Rspa
dc.relation.referencesWang, Y., Park, D. H., & Brennan, K. F. (1990). Theoretical analysis of confined quantum state GaAs/AlGaAs solid-state photomultipliers. IEEE Journal of Quantum Electronics, 26(2), 285-295. doi:10.1109/3.44960spa
dc.relation.referencesXia, J. -., & Fan, W. -. (1989). Electronic structures of superlattices under in-plane magnetic field. Physical Review B, 40(12), 8508-8515. doi:10.1103/PhysRevB.40.8508spa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem