Mostrar el registro sencillo del ítem

dc.creatorOspina D.A.spa
dc.creatorDuque C.A.spa
dc.creatorMora-Ramos M.E.spa
dc.creatorCorrea J.D.spa
dc.date.accessioned2017-12-19T19:36:43Z
dc.date.available2017-12-19T19:36:43Z
dc.date.created2017
dc.identifier.issn9270256
dc.identifier.urihttp://hdl.handle.net/11407/4274
dc.description.abstractUsing first principles calculations we investigate the effect of external electric fields in the optical and electronic properties of blue-phosphorene nanoribbons. It is shown that the application of a static external electric field serves as a tool for controlling the band gap of blue-phosphorene nanoribbons. Accordingly, the system will show a transition from semiconductor to metal, depending on the intensity of the applied electric field and the width of the nanoribbon. Our results for the imaginary part of the dielectric function suggest that the optical properties of the blue-phosphorene nanoribbons can be modulated through of the electric field as well. © 2017 Elsevier B.V.eng
dc.language.isoeng
dc.publisherElsevier B.V.spa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85017564283&doi=10.1016%2fj.commatsci.2017.03.048&partnerID=40&md5=afadd141c7c2adf51634b63d1727703bspa
dc.sourceScopusspa
dc.titleEffects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: A DFT studyspa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.contributor.affiliationOspina, D.A., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombiaspa
dc.contributor.affiliationDuque, C.A., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombiaspa
dc.contributor.affiliationMora-Ramos, M.E., Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, CP Morelos, Mexicospa
dc.contributor.affiliationCorrea, J.D., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiaspa
dc.identifier.doi10.1016/j.commatsci.2017.03.048
dc.subject.keywordDFTeng
dc.subject.keywordNanoribbonseng
dc.subject.keywordOpticaleng
dc.subject.keywordPhosphoreneeng
dc.subject.keywordCalculationseng
dc.subject.keywordElectric fieldseng
dc.subject.keywordElectronic propertieseng
dc.subject.keywordEnergy gapeng
dc.subject.keywordNanoribbonseng
dc.subject.keywordDFT studyeng
dc.subject.keywordDielectric functionseng
dc.subject.keywordExternal electric fieldeng
dc.subject.keywordFirst-principles calculationeng
dc.subject.keywordImaginary partseng
dc.subject.keywordOpticaleng
dc.subject.keywordOptical and electronic propertieseng
dc.subject.keywordPhosphoreneeng
dc.subject.keywordOptical propertieseng
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.abstractUsing first principles calculations we investigate the effect of external electric fields in the optical and electronic properties of blue-phosphorene nanoribbons. It is shown that the application of a static external electric field serves as a tool for controlling the band gap of blue-phosphorene nanoribbons. Accordingly, the system will show a transition from semiconductor to metal, depending on the intensity of the applied electric field and the width of the nanoribbon. Our results for the imaginary part of the dielectric function suggest that the optical properties of the blue-phosphorene nanoribbons can be modulated through of the electric field as well. © 2017 Elsevier B.V.eng
dc.creator.affiliationGrupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombiaspa
dc.creator.affiliationCentro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, CP Morelos, Mexicospa
dc.creator.affiliationDepartamento de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiaspa
dc.relation.ispartofesComputational Materials Sciencespa
dc.relation.ispartofesComputational Materials Science Volume 135, 1 July 2017, Pages 43-53spa
dc.relation.referencesAierken, Y., Çaklr, D., Sevik, C., & Peeters, F. M. (2015). Thermal properties of black and blue phosphorenes from a first-principles quasiharmonic approach. Physical Review B - Condensed Matter and Materials Physics, 92(8) doi:10.1103/PhysRevB.92.081408spa
dc.relation.referencesAierken, Y., Çaklr, D., Sevik, C., & Peeters, F. M. (2015). Thermal properties of black and blue phosphorenes from a first-principles quasiharmonic approach. Physical Review B - Condensed Matter and Materials Physics, 92(8) doi:10.1103/PhysRevB.92.081408spa
dc.relation.referencesÇaklr, D., Sevik, C., & Peeters, F. M. (2015). Significant effect of stacking on the electronic and optical properties of few-layer black phosphorus. Physical Review B - Condensed Matter and Materials Physics, 92(16) doi:10.1103/PhysRevB.92.165406spa
dc.relation.referencesCarvalho, A., Rodin, A. S., & Castro Neto, A. H. (2014). Phosphorene nanoribbons. EPL, 108(4) doi:10.1209/0295-5075/108/47005spa
dc.relation.referencesDai, J., & Zeng, X. C. (2014). Bilayer phosphorene: Effect of stacking order on bandgap and its potential applications in thin-film solar cells. Journal of Physical Chemistry Letters, 5(7), 1289-1293. doi:10.1021/jz500409mspa
dc.relation.referencesDing, Y., & Wang, Y. (2015). Structural, electronic, and magnetic properties of adatom adsorptions on black and blue phosphorene:A first-principles study. Journal of Physical Chemistry C, 119(19), 10610-10622. doi:10.1021/jp5114152spa
dc.relation.referencesDu, Y., Liu, H., Xu, B., Sheng, L., Yin, J., Duan, C. -., & Wan, X. (2015). Unexpected magnetic semiconductor behavior in zigzag phosphorene nanoribbons driven by half-filled one dimensional band. Scientific Reports, 5 doi:10.1038/srep08921spa
dc.relation.referencesFan, Z. -., Sun, W. -., Jiang, X. -., Luo, J. -., & Li, S. -. (2017). Two dimensional schottky contact structure based on in-plane zigzag phosphorene nanoribbon. Organic Electronics: Physics, Materials, Applications, 44, 20-24. doi:10.1016/j.orgel.2017.02.002spa
dc.relation.referencesGomes Da Rocha, C., Clayborne, P. A., Koskinen, P., & Häkkinen, H. (2014). Optical and electronic properties of graphene nanoribbons upon adsorption of ligand-protected aluminum clusters. Physical Chemistry Chemical Physics, 16(8), 3558-3565. doi:10.1039/c3cp53780cspa
dc.relation.referencesGuan, J., Zhu, Z., & Tománek, D. (2014). Phase coexistence and metal-insulator transition in few-layer phosphorene: A computational study. Physical Review Letters, 113(4) doi:10.1103/PhysRevLett.113.046804spa
dc.relation.referencesGuan, J., Zhu, Z., & Tománek, D. (2014). Tiling phosphorene. ACS Nano, 8(12), 12763-12768. doi:10.1021/nn5059248spa
dc.relation.referencesGuo, H., Lu, N., Dai, J., Wu, X., & Zeng, X. C. (2014). Phosphorene nanoribbons, phosphorus nanotubes, and van der waals multilayers. Journal of Physical Chemistry C, 118(25), 14051-14059. doi:10.1021/jp505257gspa
dc.relation.referencesHan, X., Morgan Stewart, H., Shevlin, S. A., Catlow, C. R. A., & Guo, Z. X. (2014). Strain and orientation modulated bandgaps and effective masses of phosphorene nanoribbons. Nano Letters, 14(8), 4607-4614. doi:10.1021/nl501658dspa
dc.relation.referencesHu, T., & Hong, J. (2015). Electronic structure and magnetic properties of zigzag blue phosphorene nanoribbons. Journal of Applied Physics, 118(5) doi:10.1063/1.4927848spa
dc.relation.referencesKou, L., Chen, C., & Smith, S. C. (2015). Phosphorene: Fabrication, properties, and applications. Journal of Physical Chemistry Letters, 6(14), 2794-2805. doi:10.1021/acs.jpclett.5b01094spa
dc.relation.referencesKou, L., Frauenheim, T., & Chen, C. (2014). Phosphorene as a superior gas sensor: Selective adsorption and distinct i - V response. Journal of Physical Chemistry Letters, 5(15), 2675-2681. doi:10.1021/jz501188kspa
dc.relation.referencesLi, L., Yu, Y., Ye, G. J., Ge, Q., Ou, X., Wu, H., . . . Zhang, Y. (2014). Black phosphorus field-effect transistors. Nature Nanotechnology, 9(5), 372-377. doi:10.1038/nnano.2014.35spa
dc.relation.referencesLin, J. -., Zhang, H., & Cheng, X. -. (2015). First-principle study on the optical response of phosphorene. Frontiers of Physics, 10(4) doi:10.1007/s11467-015-0468-yspa
dc.relation.referencesLing, X., Wang, H., Huang, S., Xia, F., & Dresselhaus, M. S. (2015). The renaissance of black phosphorus. Proceedings of the National Academy of Sciences of the United States of America, 112(15), 4523-4530. doi:10.1073/pnas.1416581112spa
dc.relation.referencesLiu, H., Neal, A. T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., & Ye, P. D. (2014). Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano, 8(4), 4033-4041. doi:10.1021/nn501226zspa
dc.relation.referencesNourbakhsh, Z., & Asgari, R. (2016). Excitons and optical spectra of phosphorene nanoribbons. Physical Review B, 94(3) doi:10.1103/PhysRevB.94.035437spa
dc.relation.referencesPerdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/PhysRevLett.77.3865spa
dc.relation.referencesRamasubramaniam, A., & Muniz, A. R. (2014). Ab initio studies of thermodynamic and electronic properties of phosphorene nanoribbons. Physical Review B - Condensed Matter and Materials Physics, 90(8) doi:10.1103/PhysRevB.90.085424spa
dc.relation.referencesSoler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., & Sánchez-Portal, D. (2002). The SIESTA method for ab initio order-N materials simulation. Journal of Physics Condensed Matter, 14(11), 2745-2779. doi:10.1088/0953-8984/14/11/302spa
dc.relation.referencesSorkin, V., & Zhang, Y. W. (2015). The deformation and failure behaviour of phosphorene nanoribbons under uniaxial tensile strain. 2D Materials, 2(3) doi:10.1088/2053-1583/2/3/035007spa
dc.relation.referencesSun, M., Tang, W., Ren, Q., Wang, S. -., Yu, J., & Du, Y. (2015). A first-principles study of light non-metallic atom substituted blue phosphorene. Applied Surface Science, 356, 110-114. doi:10.1016/j.apsusc.2015.08.009spa
dc.relation.referencesSun, M., Wang, S., Yu, J., & Tang, W. (2017). Hydrogenated and halogenated blue phosphorene as dirac materials: A first principles study. Applied Surface Science, 392, 46-50. doi:10.1016/j.apsusc.2016.08.094spa
dc.relation.referencesSwaroop, R., Ahluwalia, P. K., Tankeshwar, K., & Kumar, A. (2017). Ultra-narrow blue phosphorene nanoribbons for tunable optoelectronics. RSC Advances, 7(5), 2992-3002. doi:10.1039/c6ra26253hspa
dc.relation.referencesTaghizadeh Sisakht, E., Zare, M. H., & Fazileh, F. (2015). Scaling laws of band gaps of phosphorene nanoribbons: A tight-binding calculation. Physical Review B - Condensed Matter and Materials Physics, 91(8) doi:10.1103/PhysRevB.91.085409spa
dc.relation.referencesTran, V., Soklaski, R., Liang, Y., & Yang, L. (2014). Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Physical Review B - Condensed Matter and Materials Physics, 89(23) doi:10.1103/PhysRevB.89.235319spa
dc.relation.referencesTran, V., & Yang, L. (2014). Scaling law|s for the band gap and optical response of phosphorene nanoribbons. Physical Review B - Condensed Matter and Materials Physics, 89(24) doi:10.1103/PhysRevB.89.245407spa
dc.relation.referencesWu, Q., Shen, L., Yang, M., Cai, Y., Huang, Z., & Feng, Y. P. (2015). Electronic and transport properties of phosphorene nanoribbons. Physical Review B - Condensed Matter and Materials Physics, 92(3) doi:10.1103/PhysRevB.92.035436spa
dc.relation.referencesXiao, J., Long, M., Deng, C. -., He, J., Cui, L. -., & Xu, H. (2016). Electronic structures and carrier mobilities of blue phosphorus nanoribbons and nanotubes: A first-principles study. Journal of Physical Chemistry C, 120(8), 4638-4646. doi:10.1021/acs.jpcc.5b12112spa
dc.relation.referencesXie, F., Fan, Z. -., Zhang, X. -., Liu, J. -., Wang, H. -., Liu, K., . . . Long, M. -. (2017). Tuning of the electronic and transport properties of phosphorene nanoribbons by edge types and edge defects. Organic Electronics: Physics, Materials, Applications, 42, 21-27. doi:10.1016/j.orgel.2016.12.020spa
dc.relation.referencesXie, J., Si, M. S., Yang, D. Z., Zhang, Z. Y., & Xue, D. S. (2014). A theoretical study of blue phosphorene nanoribbons based on first-principles calculations. Journal of Applied Physics, 116(7) doi:10.1063/1.4893589spa
dc.relation.referencesXu, L. -., Song, X. -., Yang, Z., Cao, L., Liu, R. -., & Li, X. -. (2015). Phosphorene nanoribbons: Passivation effect on bandgap and effective mass. Applied Surface Science, 324, 640-644. doi:10.1016/j.apsusc.2014.10.166spa
dc.relation.referencesYang, G., Xu, S., Zhang, W., Ma, T., & Wu, C. (2016). Room-temperature magnetism on the zigzag edges of phosphorene nanoribbons. Physical Review B, 94(7) doi:10.1103/PhysRevB.94.075106spa
dc.relation.referencesYao, Q., Huang, C., Yuan, Y., Liu, Y., Liu, S., Deng, K., & Kan, E. (2015). Theoretical prediction of phosphorene and nanoribbons as fast-charging li ion battery anode materials. Journal of Physical Chemistry C, 119(12), 6923-6928. doi:10.1021/acs.jpcc.5b02130spa
dc.relation.referencesZhang, J., Liu, H. J., Cheng, L., Wei, J., Liang, J. H., Fan, D. D., . . . Zhang, Q. J. (2014). Phosphorene nanoribbon as a promising candidate for thermoelectric applications. Scientific Reports, 4 doi:10.1038/srep06452spa
dc.relation.referencesZhang, X., Li, Q., Xu, B., Wan, B., Yin, J., & Wan, X. G. (2016). Tuning carrier mobility of phosphorene nanoribbons by edge passivation and strain. Physics Letters, Section A: General, Atomic and Solid State Physics, 380(4), 614-620. doi:10.1016/j.physleta.2015.11.019spa
dc.relation.referencesZhang, Z., & Guo, W. (2008). Energy-gap modulation of BN ribbons by transverse electric fields: First-principles calculations. Physical Review B - Condensed Matter and Materials Physics, 77(7) doi:10.1103/PhysRevB.77.075403spa
dc.relation.referencesZhu, Z., Li, C., Yu, W., Chang, D., Sun, Q., & Jia, Y. (2014). Magnetism of zigzag edge phosphorene nanoribbons. Applied Physics Letters, 105(11) doi:10.1063/1.4895924spa
dc.relation.referencesZhu, Z., & Tománek, D. (2014). Semiconducting layered blue phosphorus: A computational study. Physical Review Letters, 112(17) doi:10.1103/PhysRevLett.112.176802spa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem