Differential galois groups and representation of quivers for seismic models with constant hessian of square of slowness
Share this
Date
2017Author
Acosta-Humánez P.
Giraldo H.
Piedrahita C.
School of Basic and Biomedical Sciences, Universidad Simón Bolívar, Barranquilla, Colombia
Institute of Mathematics, Universidad de Antioquia, Medellín, Colombia
Department of Basic Sciences, Universidad de Medellín, Medellín, Colombia
Citación
Metadata
Show full item recordAbstract
The trajectory of energy is modeled by the solution of the Eikonal equation, which can be solved by solving a Hamiltonian system. This system is amenable of treatment from the point of view of the theory of differential algebra. In particular, by Morales-Ramis theory, it is possible to analyze integrable Hamiltonian systems through the abelian structure of their variational equations. In this paper, we obtain the abelian differential Galois groups and the representation of the quiver, that allow us to obtain such abelian differential Galois groups, for some seismic models with constant Hessian of square of slowness, proposed in [20], which are equivalent to linear Hamiltonian systems with three uncoupled harmonic oscillators. © 2017 Pushpa Publishing House, Allahabad, India.
Collections
- Indexados Scopus [1813]