Mostrar el registro sencillo del ítem

dc.creatorQuintero J.H.spa
dc.creatorGonzalez-Hernandez R.spa
dc.creatorOspina R.spa
dc.creatorMarino A.spa
dc.date.accessioned2017-12-19T19:36:44Z
dc.date.available2017-12-19T19:36:44Z
dc.date.created2017
dc.identifier.issn17426588
dc.identifier.urihttp://hdl.handle.net/11407/4279
dc.description.abstractResearchers have been studying 4d and 5d Series Transition Metal Nitrides lately as a result of the experimental production of AuN, PtN, CuN. In this paper, we used the Density Functional Theory (DFT) implementing a pseudopotential plane-wave method to study the incorporation of nitrogen atoms in the face-centered cube (fcc) lattice of gold (Au). First, we took the fcc structure of gold, and gradually located the nitrogen atoms in tetrahedral (TH) and octahedral (OH) interstitial sites. AuN stabilized in: 2OH (30%), 4OH and 4TH (50%), 4OH - 2TH (close to the wurtzite structure) and 6TH (60%). This leads us to think that AuN behaves like a Transition Metal Nitride since the nitrogen atoms look for tetrahedral sites. © Published under licence by IOP Publishing Ltd.eng
dc.language.isoeng
dc.publisherInstitute of Physics Publishingspa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85022062627&doi=10.1088%2f1742-6596%2f850%2f1%2f012002&partnerID=40&md5=5812470d8966f71b42e9673e1de6cf95spa
dc.sourceScopusspa
dc.titleAuNx stabilization with interstitial nitrogen atoms: A Density Functional Theory Studyspa
dc.typeConference Papereng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.contributor.affiliationQuintero, J.H., Materiales Nanoestructurados y Biomodelación, Universidad de Medellín, Medellín, Colombiaspa
dc.contributor.affiliationGonzalez-Hernandez, R., Grupo de Investigación en Física Aplicada, Universidad Del Norte, Barranquilla, Colombiaspa
dc.contributor.affiliationOspina, R., Escuela de Física, Centro de Materiales y Nanociencia, Universidad Industrial de Santander, Bucaramanga, Colombiaspa
dc.contributor.affiliationMarino, A., Laboratorio de Superconductividad y Nuevos Materiales, Universidad Nacional de Colombia, Bogotá D.C., Colombiaspa
dc.identifier.doi10.1088/1742-6596/850/1/012002
dc.subject.keywordComputer Simulationeng
dc.subject.keywordCrystal Structureeng
dc.subject.keywordNitrideseng
dc.subject.keywordPoint Defectseng
dc.subject.keywordSolid Solutionseng
dc.subject.keywordSuperlatticeseng
dc.subject.keywordAtomseng
dc.subject.keywordComputer simulationeng
dc.subject.keywordCrystal atomic structureeng
dc.subject.keywordCrystal structureeng
dc.subject.keywordGoldeng
dc.subject.keywordLattice theoryeng
dc.subject.keywordNitrideseng
dc.subject.keywordNitrogeneng
dc.subject.keywordPoint defectseng
dc.subject.keywordRefractory metal compoundseng
dc.subject.keywordSolid solutionseng
dc.subject.keywordSuperlatticeseng
dc.subject.keywordTransition metalseng
dc.subject.keywordZinc sulfideeng
dc.subject.keywordDensity functional theory studieseng
dc.subject.keywordFace-centered cubes (fcc)eng
dc.subject.keywordInterstitial nitrogeneng
dc.subject.keywordInterstitial siteseng
dc.subject.keywordPseudopotential plane-wave methodeng
dc.subject.keywordSeries transitionseng
dc.subject.keywordTransition metal nitrideseng
dc.subject.keywordWurtzite structureeng
dc.subject.keywordDensity functional theoryeng
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.abstractResearchers have been studying 4d and 5d Series Transition Metal Nitrides lately as a result of the experimental production of AuN, PtN, CuN. In this paper, we used the Density Functional Theory (DFT) implementing a pseudopotential plane-wave method to study the incorporation of nitrogen atoms in the face-centered cube (fcc) lattice of gold (Au). First, we took the fcc structure of gold, and gradually located the nitrogen atoms in tetrahedral (TH) and octahedral (OH) interstitial sites. AuN stabilized in: 2OH (30%), 4OH and 4TH (50%), 4OH - 2TH (close to the wurtzite structure) and 6TH (60%). This leads us to think that AuN behaves like a Transition Metal Nitride since the nitrogen atoms look for tetrahedral sites. © Published under licence by IOP Publishing Ltd.eng
dc.creator.affiliationMateriales Nanoestructurados y Biomodelación, Universidad de Medellín, Medellín, Colombiaspa
dc.creator.affiliationGrupo de Investigación en Física Aplicada, Universidad Del Norte, Barranquilla, Colombiaspa
dc.creator.affiliationEscuela de Física, Centro de Materiales y Nanociencia, Universidad Industrial de Santander, Bucaramanga, Colombiaspa
dc.creator.affiliationLaboratorio de Superconductividad y Nuevos Materiales, Universidad Nacional de Colombia, Bogotá D.C., Colombiaspa
dc.relation.ispartofesJournal of Physics: Conference Seriesspa
dc.relation.ispartofesJournal of Physics: Conference Series Volume 850, Issue 1, 13 June 2017spa
dc.relation.referencesAl-Brithen, H., & Smith, A. R. (2000). Molecular beam epitaxial growth of atomically smooth scandium nitride films. Applied Physics Letters, 77(16), 2485-2487.spa
dc.relation.referencesAlves, L., Hase, T. P. A., Hunt, M. R. C., Brieva, A. C., & Šiller, L. (2008). X-ray diffraction study of gold nitride films: Observation of a solid solution phase. Journal of Applied Physics, 104(11) doi:10.1063/1.3040717spa
dc.relation.referencesCaricato, A. P., Fernàndez, M., Leggieri, G., Luches, A., Martino, M., Romano, F., . . . Meda, L. (2007). Reactive pulsed laser deposition of gold nitride thin films. Applied Surface Science, 253(19), 8037-8040. doi:10.1016/j.apsusc.2007.02.081spa
dc.relation.referencesDevia, A., Benavides, V., Castillo, H. A., & Quintero, J. (2006). Effects of the substrate temperature in AuN thin films by means of x-ray diffraction. AIP Conference Proceedings, 875, 258-261. doi:10.1063/1.2405944spa
dc.relation.referencesDevia, A., Castillo, H. A., Benavides, V. J., Arango, Y. C., & Quintero, J. H. (2008). Growth and characterization of AuN films through the pulsed arc technique. Materials Characterization, 59(2), 105-107. doi:10.1016/j.matchar.2006.10.023spa
dc.relation.referencesEvans, R. C. (1964). An Introduction to Crystal Chemistry.spa
dc.relation.referencesGiannozzi, P. (2009). J.Phys: Cond.Matt, 21(39)spa
dc.relation.referencesHugh, O. (1996). Pierson Handbook of Refractory Carbides and Nitrides.spa
dc.relation.referencesKanoun, M. B., & Goumri-Said, S. (2007). Investigation of structural stability and electronic properties of CuN, AgN and AuN by first principles calculations. Physics Letters, Section A: General, Atomic and Solid State Physics, 362(1), 73-83. doi:10.1016/j.physleta.2006.09.100spa
dc.relation.referencesKrishnamurthy, S., Montalti, M., Wardle, M. G., Shaw, M. J., Briddon, P. R., Svensson, K., . . . Šiller, L. (2004). Nitrogen ion irradiation of au(110): Photoemission spectroscopy and possible crystal structures of gold nitride. Physical Review B - Condensed Matter and Materials Physics, 70(4), 045414-1-045414-5. doi:10.1103/PhysRevB.70.045414spa
dc.relation.referencesLaasonen, K., Pasquarello, A., Car, R., Lee, C., & Vanderbilt, D. (1993). Car-parrinello molecular dynamics with vanderbilt ultrasoft pseudopotentials. Physical Review B, 47(16), 10142-10153. doi:10.1103/PhysRevB.47.10142spa
dc.relation.referencesMaruyama, T., & Morishita, T. (1996). Copper nitride and tin nitride thin films for write-once optical recording media. Applied Physics Letters, 69(7), 890-891. doi:10.1063/1.117978spa
dc.relation.referencesMethfessel, M., & Paxton, A. T. (1989). High-precision sampling for brillouin-zone integration in metals. Physical Review B, 40(6), 3616-3621. doi:10.1103/PhysRevB.40.3616spa
dc.relation.referencesMohammed, S., Suleiman, H., & Joubert Daniel, P. (2013). Cond-Mat.Mtrl-Sci.spa
dc.relation.referencesMonkhorst, H. J., & Pack, J. D. (1976). Special points for brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. doi:10.1103/PhysRevB.13.5188spa
dc.relation.referencesMurnaghan, F. D. (1944). The compressibility of media under extreme pressures. Proc.Natl.Acad.Sci.U.S.A., 30, 244-247.spa
dc.relation.referencesPerdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/PhysRevLett.77.3865spa
dc.relation.referencesQuintero, J. H., Arango, P. J., Ospina, R., Mello, A., & Mariño, A. (2015). AuN films - structure and chemical binding. Surface and Interface Analysis, 47(6), 701-705. doi:10.1002/sia.5766spa
dc.relation.referencesQuintero, J. H., Mariño, A., & Arango, P. J. (2013). Differences between thin films deposition systems in the production transition metal nitride. Journal of Physics: Conference Series, 466(1) doi:10.1088/1742-6596/466/1/012002spa
dc.relation.referencesQuintero, J. H., Mariño, A., Šiller, L., Restrepo-Parra, E., & Caro-Lopera, F. J. (2017). Rocking curves of gold nitride species prepared by arc pulsed - physical assisted plasma vapor deposition. Surface and Coatings Technology, 309, 249-257. doi:10.1016/j.surfcoat.2016.11.081spa
dc.relation.referencesQuintero, J. H., Ospina, R., Cárdenas, O. O., Alzate, G. I., & Devia, A. (2008). Phys.Scr, 131.spa
dc.relation.referencesQuintero, J. H., Ospina, R., & Mello, A. (2016). Obtaining au thin films in atmosphere of reactive nitrogen through magnetron sputtering. Journal of Physics: Conference Series, 687(1) doi:10.1088/1742-6596/687/1/012006spa
dc.relation.referencesRanjan, V., Bellaiche, L., & Walter, E. J. (2003). Strained hexagonal ScN: A material with unusual structural and optical properties. Physical Review Letters, 90(25 I), 2576021-2576024.spa
dc.relation.referencesShanley, E. S., & Ennis, J. L. (1991). The chemistry and free energy of formation of silver nitride. Industrial and Engineering Chemistry Research, 30(11), 2503-2506. doi:10.1021/ie00059a023spa
dc.relation.referencesSpyropoulos-Antonakakis, N., Sarantopoulou, E., Kollia, Z., Dražic, G., & Kobe, S. (2011). Schottky and charge memory effects in InN nanodomains. Applied Physics Letters, 99(15) doi:10.1063/1.3651327spa
dc.relation.referencesYu, R., & Zhang, X. F. (2005). Family of noble metal nitrides: First principles calculations of the elastic stability. Physical Review B - Condensed Matter and Materials Physics, 72(5) doi:10.1103/PhysRevB.72.054103spa
dc.relation.referencesYu, R., & Zhang, X. F. (2005). Platinum nitride with fluorite structure. Applied Physics Letters, 86(12), 1-3. doi:10.1063/1.1890466spa
dc.relation.referencesZerr, A., Miehe, G., & Riedel, R. (2003). Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure. Nature Materials, 2(3), 185-189. doi:10.1038/nmat836spa
dc.relation.referencesZhan, Q., Yu, R., He, L., Li, D., Nie, H., & Ong, C. (2003). Microstructural study on multilayer [FeTaN/TaN]5 films. Materials Letters, 57(24-25), 3904-3909. doi:10.1016/S0167-577X(03)00238-6spa
dc.relation.referencesZhan, Q., Yu, R., He, L. L., & Li, D. X. (2002). Microstructural characterization of fe-N thin films. Thin Solid Films, 411(2), 225-228. doi:10.1016/S0040-6090(02)00289-4spa
dc.relation.referencesZhao, E., Wang, J., Meng, J., & Wu, Z. (2010). Structural, mechanical and electronic properties of 4d transition metal mononitrides by first-principles. Computational Materials Science, 47(4), 1064-1071. doi:10.1016/j.commatsci.2009.12.011spa
dc.relation.referencesZhao, E., & Wu, Z. (2008). Electronic and mechanical properties of 5d transition metal mononitrides via first principles. Journal of Solid State Chemistry, 181(10), 2814-2827. doi:10.1016/j.jssc.2008.07.022spa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem