Mostrar el registro sencillo del ítem

dc.creatorGómez-Urrea H.A.spa
dc.creatorEscorcia-García J.spa
dc.creatorDuque C.A.spa
dc.creatorMora-Ramos M.E.spa
dc.date.accessioned2017-12-19T19:36:44Z
dc.date.available2017-12-19T19:36:44Z
dc.date.created2017
dc.identifier.issn15694410
dc.identifier.urihttp://hdl.handle.net/11407/4280
dc.description.abstractThe transmittance spectrum of a one-dimensional hybrid photonic crystal built from the suitable arrangement of periodic and quasiregular Rudin–Shapiro heterolayers that include superconducting slabs is investigated. The four-layer Rudin–Shapiro structure is designed with three lossless dielectric layers and a low-temperature superconductor one. The dielectric function of the superconducting layer is modeled by the two-fluid Gorter–Casimir theory, and the transmittance is calculated with the use of the transfer matrix method. The obtained results reveal the presence of a cut-off frequency fc – a forbidden frequency band for propagation – that can be manipulated by changing the width of the superconducting layer, the temperature and the order of the Rudin–Shapiro sequence. In addition, the spatial distribution of the electric field amplitude for the propagating TM modes is also discussed. It is found that the maximum of localized electric field relative intensity – which reaches a value of several tens – corresponds to the frequency values above to the cut-off frequency, at which, the effective dielectric function of the hybrid unit cell becomes zero. The proposed structure could be another possible system for optical device design for temperature-dependent optical devices such as stop-band filters, or as bolometers. © 2017 Elsevier B.V.eng
dc.language.isoeng
dc.publisherElsevier B.V.spa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85028341422&doi=10.1016%2fj.photonics.2017.08.001&partnerID=40&md5=1db7f2178dfcb8e2eba971aa4991bfe9spa
dc.sourceScopusspa
dc.titleAnalysis of light propagation in quasiregular and hybrid Rudin–Shapiro one-dimensional photonic crystals with superconducting layersspa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.contributor.affiliationGómez-Urrea, H.A., Facultad de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiaspa
dc.contributor.affiliationEscorcia-García, J., CONACYT-CINVESTAV del IPN, Unidad Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial, Ramos Arizpe, Mexicospa
dc.contributor.affiliationDuque, C.A., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombiaspa
dc.contributor.affiliationMora-Ramos, M.E., Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos, Mexicospa
dc.identifier.doi10.1016/j.photonics.2017.08.001
dc.subject.keyword1D photonic crystalseng
dc.subject.keywordDielectric-superconductor heterostructureseng
dc.subject.keywordRudin-Shapiroeng
dc.subject.keywordCrystalseng
dc.subject.keywordElectric field effectseng
dc.subject.keywordElectric fieldseng
dc.subject.keywordFrequency bandseng
dc.subject.keywordOptical deviceseng
dc.subject.keywordSuperconducting materialseng
dc.subject.keywordTemperatureeng
dc.subject.keywordTransfer matrix methodeng
dc.subject.keyword1-D photonic crystaleng
dc.subject.keywordElectric-field amplitudeeng
dc.subject.keywordHybrid photonic crystalseng
dc.subject.keywordLow temperature superconductorseng
dc.subject.keywordOne dimensional photonic crystaleng
dc.subject.keywordRudin-Shapiroeng
dc.subject.keywordSuperconductor heterostructureseng
dc.subject.keywordTransmittance spectraeng
dc.subject.keywordPhotonic crystalseng
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.abstractThe transmittance spectrum of a one-dimensional hybrid photonic crystal built from the suitable arrangement of periodic and quasiregular Rudin–Shapiro heterolayers that include superconducting slabs is investigated. The four-layer Rudin–Shapiro structure is designed with three lossless dielectric layers and a low-temperature superconductor one. The dielectric function of the superconducting layer is modeled by the two-fluid Gorter–Casimir theory, and the transmittance is calculated with the use of the transfer matrix method. The obtained results reveal the presence of a cut-off frequency fc – a forbidden frequency band for propagation – that can be manipulated by changing the width of the superconducting layer, the temperature and the order of the Rudin–Shapiro sequence. In addition, the spatial distribution of the electric field amplitude for the propagating TM modes is also discussed. It is found that the maximum of localized electric field relative intensity – which reaches a value of several tens – corresponds to the frequency values above to the cut-off frequency, at which, the effective dielectric function of the hybrid unit cell becomes zero. The proposed structure could be another possible system for optical device design for temperature-dependent optical devices such as stop-band filters, or as bolometers. © 2017 Elsevier B.V.eng
dc.creator.affiliationFacultad de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiaspa
dc.creator.affiliationCONACYT-CINVESTAV del IPN, Unidad Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial, Ramos Arizpe, Mexicospa
dc.creator.affiliationGrupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombiaspa
dc.creator.affiliationCentro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos, Mexicospa
dc.relation.ispartofesPhotonics and Nanostructures - Fundamentals and Applicationsspa
dc.relation.ispartofesPhotonics and Nanostructures - Fundamentals and Applications Volume 27, November 2017, Pages 1-10spa
dc.relation.referencesAgarwal, V., Mora-Ramos, M. E., & Alvarado-Tenorio, B. (2009). Optical properties of multilayered period-doubling and rudin-shapiro porous silicon dielectric heterostructures. Photonics and Nanostructures - Fundamentals and Applications, 7(2), 63-68. doi:10.1016/j.photonics.2008.11.001spa
dc.relation.referencesAlbuquerque, E. L., & Cottam, M. G. (2003). Theory of elementary excitations in quasiperiodic structures. Physics Reports, 376(4-5), 225-337. doi:10.1016/S0370-1573(02)00559-8spa
dc.relation.referencesAli, N. B., & Kanzari, M. (2011). Designing of stop band filters using hybrid periodic/quasi-periodic one-dimensional photonic crystals in microwave domain. Physica Status Solidi (A) Applications and Materials Science, 208(1), 161-171. doi:10.1002/pssa.200925531spa
dc.relation.referencesAly, A. H., Ryu, S. -., Hsu, H. -., & Wu, C. -. (2009). THz transmittance in one-dimensional superconducting nanomaterial-dielectric superlattice. Materials Chemistry and Physics, 113(1), 382-384. doi:10.1016/j.matchemphys.2008.07.123spa
dc.relation.referencesAsmi, R., Ben Ali, N., & Kanzari, M. (2016). Enhancement of light localization in hybrid Thue–Morse/Periodic photonic crystals. J.Mater., 2016, 9471312.spa
dc.relation.referencesBaraket, Z., Zaghdoudi, J., & Kanzari, M. (2016). Study of optical responses in hybrid symmetrical quasi-periodic photonic crystals. Progress in Electromagnetics Research M, 46, 29-37.spa
dc.relation.referencesBen Ali, N., & Kanzari, M. (2010). Designing of omni-directional high reflectors by using one-dimensional modified hybrid Fibonacci/Cantor band-gap structures at optical telecommunication wavelength band. Journal of Modern Optics, 57(4), 287-294. doi:10.1080/09500340903545289spa
dc.relation.referencesEscorcia-García, J., Duque, C. A., & Mora-Ramos, M. E. (2011). Optical properties of hybrid periodic/quasiregular dielectric multilayers. Superlattices and Microstructures, 49(3), 203-208. doi:10.1016/j.spmi.2010.08.006spa
dc.relation.referencesEscorcia-García, J., & Mora-Ramos, M. E. (2013). Propagation and confinement of electric field waves along one-dimensional porous silicon hybrid periodic/quasiperiodic structure. Opt.Photonics J., 3, 1-12.spa
dc.relation.referencesEscorcia-García, J., & Mora-Ramos, M. E. (2009). Study of optical propagation in hybrid periodic/quasiregular structures based on porous silicon. PIERS Online, 5, 2.spa
dc.relation.referencesJanot, C. (1994). Quasicrystals.spa
dc.relation.referencesJohn, S. (1987). Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 58(23), 2486-2489. doi:10.1103/PhysRevLett.58.2486spa
dc.relation.referencesKanzari, M., & Rezig, B. (2001). Optical polychromatic filter by the combination of periodic and quasi-periodic one-dimensional, dielectric photonic bandgap structures. Journal of Optics A: Pure and Applied Optics, 3(6), S201-S207. doi:10.1088/1464-4258/3/6/372spa
dc.relation.referencesKautz, R. L. (1978). Picosecond pulses on superconducting striplines. Journal of Applied Physics, 49(1), 308-314. doi:10.1063/1.324387spa
dc.relation.referencesLee, H. -., & wu, J. -. (2010). Transmittance spectra in one-dimensional superconductor-dielectric photonic crystal. Journal of Applied Physics, 107(9), 256. doi:10.1063/1.3362935spa
dc.relation.referencesLee, H. -., & wu, J. -. (2010). Transmittance spectra in one-dimensional superconductor-dielectric photonic crystal. Journal of Applied Physics, 107(9), 256. doi:10.1063/1.3362935spa
dc.relation.referencesLi, C. -., Liu, S. -., Kong, X. -., Bian, B. -., & Zhang, X. -. (2011). Tunable photonic bandgap in a one-dimensional superconducting-dielectric superlattice. Applied Optics, 50(16), 2370-2375. doi:10.1364/AO.50.002370spa
dc.relation.referencesLiu, C. -., Zhang, H. -., & Chen, Y. -. (2013). Enlarged the omnidirectional bragg gap by one-dimensional superconductor-dielectric photonic crystals with ternary thue-morse aperiodic structure. Optik, 124(22), 5811-5817. doi:10.1016/j.ijleo.2013.04.053spa
dc.relation.referencesLiu, Y., & Yi, L. (2014). Tunable terahertz multichannel filter based on one-dimensional superconductor-dielectric photonic crystals. Journal of Applied Physics, 116(22) doi:10.1063/1.4904054spa
dc.relation.referencesLue, J. -., & Sheng, J. -. (1993). Retention of the pairing mechanism by coupled surface-plasmon-polariton waves in the YBa2Cu3O7/YBa2Cu3O6 superlattices. Physical Review B, 47(9), 5469-5472. doi:10.1103/PhysRevB.47.5469spa
dc.relation.referencesLyubchanskii, I. L., Dadoenkova, N. N., Zabolotin, A. E., Lee, Y. P., & Rasing, T. (2009). A one-dimensional photonic crystal with a superconducting defect layer. Journal of Optics A: Pure and Applied Optics, 11(11) doi:10.1088/1464-4258/11/11/114014spa
dc.relation.referencesMaciá, E. (2009). Aperiodic structures in condensed matter: Fundamentals and applications. Aperiodic Structures in Condensed Matter: Fundamentals and Applications.spa
dc.relation.referencesMacIá, E. (2012). Exploiting aperiodic designs in nanophotonic devices. Reports on Progress in Physics, 75(3) doi:10.1088/0034-4885/75/3/036502spa
dc.relation.referencesMaciá, E. (2001). Exploiting quasiperiodic order in the design of optical devices. Physical Review B - Condensed Matter and Materials Physics, 63(20), 2054211-2054218.spa
dc.relation.referencesMogilevtsev, D., Reyes-Gómez, E., Cavalcanti, S. B., De Carvalho, C. A. A., & Oliveira, L. E. (2010). Plasmon polaritons in photonic metamaterial superlattices: Absorption effects. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 81(4) doi:10.1103/PhysRevE.81.047601spa
dc.relation.referencesMontalbán, A., Velasco, V. R., Tutor, J., & Fernández-Velicia, F. J. (2004). Phonon confinement in one-dimensional hybrid periodic/quasiregular structures. Physical Review B - Condensed Matter and Materials Physics, 70(13), 132301-1-132301-4. doi:10.1103/PhysRevB.70.132301spa
dc.relation.referencesMontalbán, A., Velasco, V. R., Tutor, J., & Fernández-Velicia, F. J. (2009). Phonons in hybrid Fibonacci/periodic multilayers. Surface Science, 603(6), 938-944. doi:10.1016/j.susc.2009.02.011spa
dc.relation.referencesMontalbán, A., Velasco, V. R., Tutor, J., & Fernández-Velicia, F. J. (2007). Selective spatial localization of the atom displacements in one-dimensional hybrid quasi-regular (thue-morse and rudin-shapiro)/periodic structures. Surface Science, 601(12), 2538-2547. doi:10.1016/j.susc.2007.04.204spa
dc.relation.referencesMora, M. E., Perez, R., & Sommers, C. B. (1985). TRANSFER MATRIX IN ONE DIMENSIONAL PROBLEMS. Journal De Physique Paris, 46(7), 1021-1026.spa
dc.relation.referencesMoreno, E., Erni, D., & Hafner, C. (2002). Band structure computations of metallic photonic crystals with the multiple multipole method. Physical Review B - Condensed Matter and Materials Physics, 65(15), 1551201-15512010.spa
dc.relation.referencesPeng, R. W., Huang, X. Q., Qiu, F., Wang, M., Hu, A., Jiang, S. S., & Mazzer, M. (2002). Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers. Applied Physics Letters, 80(17), 3063-3065. doi:10.1063/1.1468895spa
dc.relation.referencesPeng, R. W., Liu, Y. M., Huang, X. Q., Qiu, F., Wang, M., Hu, A., . . . Zou, J. (2004). Dimerlike positional correlation and resonant transmission of electromagnetic waves in aperiodic dielectric multilayers. Physical Review B - Condensed Matter and Materials Physics, 69(16), 165109-1-165109-7. doi:10.1103/PhysRevB.69.165109spa
dc.relation.referencesPeréz-Alvarez, R., & García-Moliner, F. (2001). Quasirregular Heteroestructures, Contemporary Problems of the Condensed Matter Physics.spa
dc.relation.referencesPimenov, A., Loidl, A., Przyslupski, P., & Dabrowski, B. (2005). Negative refraction in ferromagnet-superconductor superlattices. Physical Review Letters, 95(24) doi:10.1103/PhysRevLett.95.247009spa
dc.relation.referencesQueffélec, M. (1987). Substitution dynamical systems - spectral analysis. Lecture Notes in Mathematics, 1294spa
dc.relation.referencesRahimi, H. (2016). Analysis of photonic spectra in thue-morse, double-period and rudin-shapiro quasiregular structures made of high temperature superconductors in visible range. Optical Materials, 57, 264-271. doi:10.1016/j.optmat.2016.04.022spa
dc.relation.referencesRauh, H., & Genenko, Y. A. (2008). The effect of a superconducting surface layer on the optical properties of a dielectric photonic composite. Journal of Physics Condensed Matter, 20(14) doi:10.1088/0953-8984/20/14/145203spa
dc.relation.referencesRaymond Ooi, C. H., & Au Yeung, T. C. (1999). Polariton gap in a superconductor-dielectric superlattice. Physics Letters, Section A: General, Atomic and Solid State Physics, 259(5), 413-419.spa
dc.relation.referencesRaymond Ooi, C. H., Au Yeung, T. C., Kam, C. H., & Lim, T. K. (2000). Photonic band gap in a superconductor-dielectric superlattice. Physical Review B - Condensed Matter and Materials Physics, 61(9), 5920-5923.spa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem