Mostrar el registro sencillo del ítem

dc.creatorArias E.spa
dc.creatorFlorez E.spa
dc.creatorPérez-Torres J.F.spa
dc.date.accessioned2017-12-19T19:36:44Z
dc.date.available2017-12-19T19:36:44Z
dc.date.created2017
dc.identifier.issn219606
dc.identifier.urihttp://hdl.handle.net/11407/4282
dc.description.abstractA new algorithm for the determination of equilibrium structures suitable for metal nanoclusters is proposed. The algorithm performs a stochastic search of the minima associated with the nuclear potential energy function restricted to a sphere (similar to the Thomson problem), in order to guess configurations of the nuclear positions. Subsequently, the guessed configurations are further optimized driven by the total energy function using the conventional gradient descent method. This methodology is equivalent to using the valence shell electron pair repulsion model in guessing initial configurations in the traditional molecular quantum chemistry. The framework is illustrated in several clusters of increasing complexity: Cu7, Cu9, and Cu11 as benchmark systems, and Cu38 and Ni9 as novel systems. New equilibrium structures for Cu9, Cu11, Cu38, and Ni9 are reported. © 2017 Author(s).eng
dc.language.isoeng
dc.publisherAmerican Institute of Physics Inc.spa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85021646266&doi=10.1063%2f1.4984049&partnerID=40&md5=94f83345cd96396ea9a0d8ae262a6bf4spa
dc.sourceScopusspa
dc.titleAlgorithm based on the Thomson problem for determination of equilibrium structures of metal nanoclustersspa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.contributor.affiliationArias, E., Facultad de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiaspa
dc.contributor.affiliationFlorez, E., Facultad de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiaspa
dc.contributor.affiliationPérez-Torres, J.F., Facultad de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Escuela de Qumica, Universidad Industrial de Santander, Bucaramanga, Colombiaspa
dc.identifier.doi10.1063/1.4984049
dc.subject.keywordPotential energy functionseng
dc.subject.keywordQuantum chemistryeng
dc.subject.keywordStochastic systemseng
dc.subject.keywordEquilibrium structureseng
dc.subject.keywordGradient Descent methodeng
dc.subject.keywordInitial configurationeng
dc.subject.keywordMetal nanoclusterseng
dc.subject.keywordMolecular quantum chemistryeng
dc.subject.keywordNuclear positionseng
dc.subject.keywordStochastic searcheng
dc.subject.keywordValence shell electron pair repulsioneng
dc.subject.keywordNanoclusterseng
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.abstractA new algorithm for the determination of equilibrium structures suitable for metal nanoclusters is proposed. The algorithm performs a stochastic search of the minima associated with the nuclear potential energy function restricted to a sphere (similar to the Thomson problem), in order to guess configurations of the nuclear positions. Subsequently, the guessed configurations are further optimized driven by the total energy function using the conventional gradient descent method. This methodology is equivalent to using the valence shell electron pair repulsion model in guessing initial configurations in the traditional molecular quantum chemistry. The framework is illustrated in several clusters of increasing complexity: Cu7, Cu9, and Cu11 as benchmark systems, and Cu38 and Ni9 as novel systems. New equilibrium structures for Cu9, Cu11, Cu38, and Ni9 are reported. © 2017 Author(s).eng
dc.creator.affiliationFacultad de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiaspa
dc.creator.affiliationEscuela de Qumica, Universidad Industrial de Santander, Bucaramanga, Colombiaspa
dc.relation.ispartofesJournal of Chemical Physicsspa
dc.relation.ispartofesJournal of Chemical Physics Volume 146, Issue 24, 28 June 2017spa
dc.relation.referencesApsel, S. E., Emmert, J. W., Deng, J., & Bloomfield, L. A. (1996). Surface-enhanced magnetism in nickel clusters. Physical Review Letters, 76(9), 1441-1444. doi:10.1103/PhysRevLett.76.1441spa
dc.relation.referencesAssadollahzadeh, B., Bunker, P. R., & Schwerdtfeger, P. (2008). The low lying isomers of the copper nonamer cluster, Cu9. Chemical Physics Letters, 451(4-6), 262-269. doi:10.1016/j.cplett.2007.12.024spa
dc.relation.referencesBarrón, C., Gómez, S., Romero, D., & Saavedra, A. (1999). A genetic algorithm for lennard-jones atomic clusters. Applied Mathematics Letters, 12(7), 85-90.spa
dc.relation.referencesCai, W., Feng, Y., Shao, X., & Pan, Z. (2002). Optimization of lennard-jones atomic clusters. Journal of Molecular Structure: THEOCHEM, 579, 229-234. doi:10.1016/S0166-1280(01)00730-8spa
dc.relation.referencesCalaminici, P., Köster, A. M., & Gómez-Sandoval, Z. (2007). Density functional study of the structure and properties of Cu9 and Cu9-. Journal of Chemical Theory and Computation, 3(3), 905-913. doi:10.1021/ct600358aspa
dc.relation.referencesCalaminici, P., Pérez-Romero, M., Vásquez-Pérez, J. M., & Köster, A. M. (2013). On the ground state structure of neutral cun (n=12,14,16,18,20) clusters. Computational and Theoretical Chemistry, 1021, 41-48. doi:10.1016/j.comptc.2013.06.014spa
dc.relation.referencesChaves, A. S., Rondina, G. G., Piotrowski, M. J., Tereshchuk, P., & Da Silva, J. L. F. (2014). The role of charge states in the atomic structure of cun and ptn (n = 2-14 atoms) clusters: A DFT investigation. Journal of Physical Chemistry A, 118(45), 10813-10821. doi:10.1021/jp508220hspa
dc.relation.referencesCsászár, A. G., Fábri, C., Szidarovszky, T., Mátyus, E., Furtenbacher, T., & Czakó, G. (2012). The fourth age of quantum chemistry: Molecules in motion. Physical Chemistry Chemical Physics, 14(3), 1085-1106. doi:10.1039/c1cp21830aspa
dc.relation.referencesDoye, J. P. K., & Wales, D. J. (1998). Global minima for transition metal clusters described by sutton-chen potentials. New Journal of Chemistry, 22(7), 733-744.spa
dc.relation.referencesDoye, J. P. K., Wales, D. J., & Berry, R. S. (1995). The effect of the range of the potential on the structures of clusters. The Journal of Chemical Physics, 103(10), 4234-4249.spa
dc.relation.referencesFerraro, F., Pérez-Torres, J. F., & Hadad, C. Z. (2015). Selective catalytic activation of acetylene by a neutral gold cluster of experimentally known gas-phase geometry. Journal of Physical Chemistry C, 119(14), 7755-7764. doi:10.1021/jp512989qspa
dc.relation.referencesGeudtner, G., Domínguez-Soria, V. D., Calaminici, P., & Köster, A. M. (2015). Molecular graphs of lin, nan and cun (n=6-9) clusters from the density and the molecular electrostatic potential. Computational and Theoretical Chemistry, 1053, 337-342. doi:10.1016/j.comptc.2014.07.021spa
dc.relation.referencesGillespie, R. J. (2008). Fifty years of the VSEPR model. Coordination Chemistry Reviews, 252(12-14), 1315-1327. doi:10.1016/j.ccr.2007.07.007spa
dc.relation.referencesGillespie, R. J. (1970). The electron-pair repulsion model for molecular geometry. Journal of Chemical Education, 47(1), 18-23.spa
dc.relation.referencesGillespie, R. J., & Nyholm, R. S. (1957). Inorganic stereochemistry. Quarterly Reviews, Chemical Society, 11(4), 339-380.spa
dc.relation.referencesGoldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning.spa
dc.relation.referencesGruene, P., Rayner, D. M., Redlich, B., Van Der Meer, A. F. G., Lyon, J. T., Meijer, G., & Fielicke, A. (2008). Structures of neutral Au7, Au19, and Au20 clusters in the gas phase. Science, 321(5889), 674-676. doi:10.1126/science.1161166spa
dc.relation.referencesGuan, G., Liu, S., Cai, Y., Low, M., Bharathi, M. S., Zhang, S., . . . Han, M. -. (2014). Destabilization of gold clusters for controlled nanosynthesis: From clusters to polyhedra. Advanced Materials, 26(21), 3427-3432. doi:10.1002/adma.201306167spa
dc.relation.referencesGupta, R. P. (1981). Lattice relaxation at a metal surface. Physical Review B, 23(12), 6265-6270. doi:10.1103/PhysRevB.23.6265spa
dc.relation.referencesGuzmán-Ramírez, G., Aguilera-Granja, F., & Robles, J. (2010). DFT and GEGA genetic algorithm optimized structures of cun ν (ν=±1,0,2; N=3-13) clusters. European Physical Journal D, 57(1), 49-60. doi:10.1140/epjd/e2010-00001-4spa
dc.relation.referencesJin, M., Hao, G., Sun, X., & Chen, W. (2012). Nanoparticle-based positron emission tomography and single photon emission computed tomography imaging of cancer. Rev.Nanosci.Nanotechnol. 1.spa
dc.relation.referencesJin, R., Zeng, C., Zhou, M., & Chen, Y. (2016). Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chemical Reviews, 116(18), 10346-10413. doi:10.1021/acs.chemrev.5b00703spa
dc.relation.referencesJug, K., Zimmermann, B., Calaminici, P., & Köster, A. M. (2002). Structure and stability of small copper clusters. Journal of Chemical Physics, 116(11), 4497-4507. doi:10.1063/1.1436465spa
dc.relation.referencesKabir, M., Mookerjee, A., & Bhattacharya, A. K. (2004). Structure and stability of copper clusters: A tight-binding molecular dynamics study. Physical Review A - Atomic, Molecular, and Optical Physics, 69(4), 043203-1-043203-10. doi:10.1103/PhysRevA.69.043203spa
dc.relation.referencesLewis, G. N. (1916). The atom and the molecule. Journal of the American Chemical Society, 38(4), 762-785. doi:10.1021/ja02261a002spa
dc.relation.referencesLuo, C. (2000). Structure of small nickel clusters: Ni2-Ni19. Modelling and Simulation in Materials Science and Engineering, 8(2), 95-102. doi:10.1088/0965-0393/8/2/301spa
dc.relation.referencesMátyus, E., Hutter, J., Müller-Herold, U., & Reiher, M. (2011). Extracting elements of molecular structure from the all-particle wave function. Journal of Chemical Physics, 135(20) doi:10.1063/1.3662487spa
dc.relation.referencesMátyus, E., Hutter, J., Müller-Herold, U., & Reiher, M. (2011). On the emergence of molecular structure. Physical Review A - Atomic, Molecular, and Optical Physics, 83(5) doi:10.1103/PhysRevA.83.052512spa
dc.relation.referencesMátyus, E., & Reiher, M. (2012). Molecular structure calculations: A unified quantum mechanical description of electrons and nuclei using explicitly correlated gaussian functions and the global vector representation. Journal of Chemical Physics, 137(2) doi:10.1063/1.4731696spa
dc.relation.referencesMehta, D., Chen, J., Chen, D. Z., Kusumaatmaja, H., & Wales, D. J. (2016). Kinetic transition networks for the thomson problem and smale's seventh problem. Physical Review Letters, 117(2) doi:10.1103/PhysRevLett.117.028301spa
dc.relation.referencesMehta, D., Chen, T., Hauenstein, J. D., & Wales, D. J. (2014). Communication: Newton homotopies for sampling stationary points of potential energy landscapes. Journal of Chemical Physics, 141(12) doi:10.1063/1.4896657spa
dc.relation.referencesMehta, D., Chen, T., Morgan, J. W. R., & Wales, D. J. (2015). Exploring the potential energy landscape of the thomson problem via newton homotopies. Journal of Chemical Physics, 142(19) doi:10.1063/1.4921163spa
dc.relation.referencesMitchell, M. (1996). An Introduction to Genetic Algorithms.spa
dc.relation.referencesMitzinger, S., Broeckaert, L., Massa, W., Weigend, F., & Dehnen, S. (2016). Understanding of multimetallic cluster growth. Nature Communications, 7 doi:10.1038/ncomms10480spa
dc.relation.referencesParks, E. K., Zhu, L., Ho, J., & Riley, S. J. (1994). The structure of small nickel clusters. I. Ni3-Ni15. The Journal of Chemical Physics, 100(10), 7206-7222.spa
dc.relation.referencesPerdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/PhysRevLett.77.3865spa
dc.relation.referencesPéreza, J. F., Florez, E., Hadad, C. Z., Fuentealba, P., & Restrepo, A. (2008). Stochastic search of the quantum conformational space of small lithium and bimetallic lithium-sodium clusters. Journal of Physical Chemistry A, 112(25), 5749-5755. doi:10.1021/jp802176wspa
dc.relation.referencesPillardy, J., Liwo, A., & Scheraga, H. A. (1999). An efficient deformation-based global optimization method (self-consistent basin-to-deformed-basin mapping (SCBDBM)). Application to lennard-jones atomic clusters. Journal of Physical Chemistry A, 103(46), 9370-9377.spa
dc.relation.referencesRakhmanov, E. A., Saff, E. B., & Zhou, Y. M. (1995). Computational Methods and Function Theory 1994 (Penang), 293-309.spa
dc.relation.referencesRastogi, S. K., Denn, B. D., & Branen, A. L. (2012). Synthesis of highly fluorescent and thio-linkers stabilize gold quantum dots and nano clusters in DMF for bio-labeling. Journal of Nanoparticle Research, 14(1) doi:10.1007/s11051-011-0673-8spa
dc.relation.referencesSchebarchov, D., & Wales, D. J. (2015). Quasi-combinatorial energy landscapes for nanoalloy structure optimisation. Physical Chemistry Chemical Physics, 17(42), 28331-28338. doi:10.1039/c5cp01198aspa
dc.relation.referencesSmale, S. (1998). Mathematical problems for the next century. Mathematical Intelligencer, 20(2), 7-15.spa
dc.relation.referencesSoler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., & Sánchez-Portal, D. (2002). The SIESTA method for ab initio order-N materials simulation. Journal of Physics Condensed Matter, 14(11), 2745-2779. doi:10.1088/0953-8984/14/11/302spa
dc.relation.referencesSperling, G. (1960). Lösung einer elementargeometrischen frage von FEJES TÒTH. Archiv Der Mathematik, 11(1), 69-71. doi:10.1007/BF01236910spa
dc.relation.referencesStephen Berry, R. (1960). Correlation of rates of intramolecular tunneling processes, with application to some group V compounds. The Journal of Chemical Physics, 32(3), 933-938.spa
dc.relation.referencesStewart, J. J. P. (2007). Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. Journal of Molecular Modeling, 13(12), 1173-1213. doi:10.1007/s00894-007-0233-4spa
dc.relation.referencesSzabó, I., Fábri, C., Czakó, G., Mátyus, E., & Császár, A. G. (2012). Temperature-dependent, effective structures of the 14NH 3 and 14ND 3 molecules. Journal of Physical Chemistry A, 116(17), 4356-4362. doi:10.1021/jp211802yspa
dc.relation.referencesThomson, J. J. (1904). On the structure of the atom. Philos.Mag., 7(39), 237-265.spa
dc.relation.referencesTóth, L. F. (1959). Über eine punktverteilung auf der kugel. Acta Mathematica Academiae Scientiarum Hungaricae, 10(1-2), 13-19. doi:10.1007/BF02063286spa
dc.relation.referencesTsuchida, R. (1939). New simple valency theory. J.Chem.Soc.Jpn.(in Japanese), 60, 245-256.spa
dc.relation.referencesWales, D. J., & Doye, J. P. K. (1997). Global optimization by basin-hopping and the lowest energy structures of lennard-jones clusters containing up to 110 atoms. Journal of Physical Chemistry A, 101(28), 5111-5116. doi:10.1021/jp970984nspa
dc.relation.referencesWales, D. J., Doye, J. P. K., Dullweber, A., Hodges, M. P., Calvo, F. Y. N. F., Hernández-Rojas, J., & Middleton, T. F. (2016). The Cambridge Energy Landscape Database.spa
dc.relation.referencesWales, D. J., & Scheraga, H. A. (1999). Global optimization of clusters, crystals, and biomolecules. Science, 285(5432), 1368-1372. doi:10.1126/science.285.5432.1368spa
dc.relation.referencesZhang, J., & Dolg, M. (2015). ABCluster: The artificial bee colony algorithm for cluster global optimization. Physical Chemistry Chemical Physics, 17(37), 24173-24181. doi:10.1039/c5cp04060dspa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem