Mostrar el registro sencillo del ítem
Algorithm based on the Thomson problem for determination of equilibrium structures of metal nanoclusters
dc.creator | Arias E. | spa |
dc.creator | Florez E. | spa |
dc.creator | Pérez-Torres J.F. | spa |
dc.date.accessioned | 2017-12-19T19:36:44Z | |
dc.date.available | 2017-12-19T19:36:44Z | |
dc.date.created | 2017 | |
dc.identifier.issn | 219606 | |
dc.identifier.uri | http://hdl.handle.net/11407/4282 | |
dc.description.abstract | A new algorithm for the determination of equilibrium structures suitable for metal nanoclusters is proposed. The algorithm performs a stochastic search of the minima associated with the nuclear potential energy function restricted to a sphere (similar to the Thomson problem), in order to guess configurations of the nuclear positions. Subsequently, the guessed configurations are further optimized driven by the total energy function using the conventional gradient descent method. This methodology is equivalent to using the valence shell electron pair repulsion model in guessing initial configurations in the traditional molecular quantum chemistry. The framework is illustrated in several clusters of increasing complexity: Cu7, Cu9, and Cu11 as benchmark systems, and Cu38 and Ni9 as novel systems. New equilibrium structures for Cu9, Cu11, Cu38, and Ni9 are reported. © 2017 Author(s). | eng |
dc.language.iso | eng | |
dc.publisher | American Institute of Physics Inc. | spa |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021646266&doi=10.1063%2f1.4984049&partnerID=40&md5=94f83345cd96396ea9a0d8ae262a6bf4 | spa |
dc.source | Scopus | spa |
dc.title | Algorithm based on the Thomson problem for determination of equilibrium structures of metal nanoclusters | spa |
dc.type | Article | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.contributor.affiliation | Arias, E., Facultad de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia | spa |
dc.contributor.affiliation | Florez, E., Facultad de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia | spa |
dc.contributor.affiliation | Pérez-Torres, J.F., Facultad de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Escuela de Qumica, Universidad Industrial de Santander, Bucaramanga, Colombia | spa |
dc.identifier.doi | 10.1063/1.4984049 | |
dc.subject.keyword | Potential energy functions | eng |
dc.subject.keyword | Quantum chemistry | eng |
dc.subject.keyword | Stochastic systems | eng |
dc.subject.keyword | Equilibrium structures | eng |
dc.subject.keyword | Gradient Descent method | eng |
dc.subject.keyword | Initial configuration | eng |
dc.subject.keyword | Metal nanoclusters | eng |
dc.subject.keyword | Molecular quantum chemistry | eng |
dc.subject.keyword | Nuclear positions | eng |
dc.subject.keyword | Stochastic search | eng |
dc.subject.keyword | Valence shell electron pair repulsion | eng |
dc.subject.keyword | Nanoclusters | eng |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.abstract | A new algorithm for the determination of equilibrium structures suitable for metal nanoclusters is proposed. The algorithm performs a stochastic search of the minima associated with the nuclear potential energy function restricted to a sphere (similar to the Thomson problem), in order to guess configurations of the nuclear positions. Subsequently, the guessed configurations are further optimized driven by the total energy function using the conventional gradient descent method. This methodology is equivalent to using the valence shell electron pair repulsion model in guessing initial configurations in the traditional molecular quantum chemistry. The framework is illustrated in several clusters of increasing complexity: Cu7, Cu9, and Cu11 as benchmark systems, and Cu38 and Ni9 as novel systems. New equilibrium structures for Cu9, Cu11, Cu38, and Ni9 are reported. © 2017 Author(s). | eng |
dc.creator.affiliation | Facultad de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia | spa |
dc.creator.affiliation | Escuela de Qumica, Universidad Industrial de Santander, Bucaramanga, Colombia | spa |
dc.relation.ispartofes | Journal of Chemical Physics | spa |
dc.relation.ispartofes | Journal of Chemical Physics Volume 146, Issue 24, 28 June 2017 | spa |
dc.relation.references | Apsel, S. E., Emmert, J. W., Deng, J., & Bloomfield, L. A. (1996). Surface-enhanced magnetism in nickel clusters. Physical Review Letters, 76(9), 1441-1444. doi:10.1103/PhysRevLett.76.1441 | spa |
dc.relation.references | Assadollahzadeh, B., Bunker, P. R., & Schwerdtfeger, P. (2008). The low lying isomers of the copper nonamer cluster, Cu9. Chemical Physics Letters, 451(4-6), 262-269. doi:10.1016/j.cplett.2007.12.024 | spa |
dc.relation.references | Barrón, C., Gómez, S., Romero, D., & Saavedra, A. (1999). A genetic algorithm for lennard-jones atomic clusters. Applied Mathematics Letters, 12(7), 85-90. | spa |
dc.relation.references | Cai, W., Feng, Y., Shao, X., & Pan, Z. (2002). Optimization of lennard-jones atomic clusters. Journal of Molecular Structure: THEOCHEM, 579, 229-234. doi:10.1016/S0166-1280(01)00730-8 | spa |
dc.relation.references | Calaminici, P., Köster, A. M., & Gómez-Sandoval, Z. (2007). Density functional study of the structure and properties of Cu9 and Cu9-. Journal of Chemical Theory and Computation, 3(3), 905-913. doi:10.1021/ct600358a | spa |
dc.relation.references | Calaminici, P., Pérez-Romero, M., Vásquez-Pérez, J. M., & Köster, A. M. (2013). On the ground state structure of neutral cun (n=12,14,16,18,20) clusters. Computational and Theoretical Chemistry, 1021, 41-48. doi:10.1016/j.comptc.2013.06.014 | spa |
dc.relation.references | Chaves, A. S., Rondina, G. G., Piotrowski, M. J., Tereshchuk, P., & Da Silva, J. L. F. (2014). The role of charge states in the atomic structure of cun and ptn (n = 2-14 atoms) clusters: A DFT investigation. Journal of Physical Chemistry A, 118(45), 10813-10821. doi:10.1021/jp508220h | spa |
dc.relation.references | Császár, A. G., Fábri, C., Szidarovszky, T., Mátyus, E., Furtenbacher, T., & Czakó, G. (2012). The fourth age of quantum chemistry: Molecules in motion. Physical Chemistry Chemical Physics, 14(3), 1085-1106. doi:10.1039/c1cp21830a | spa |
dc.relation.references | Doye, J. P. K., & Wales, D. J. (1998). Global minima for transition metal clusters described by sutton-chen potentials. New Journal of Chemistry, 22(7), 733-744. | spa |
dc.relation.references | Doye, J. P. K., Wales, D. J., & Berry, R. S. (1995). The effect of the range of the potential on the structures of clusters. The Journal of Chemical Physics, 103(10), 4234-4249. | spa |
dc.relation.references | Ferraro, F., Pérez-Torres, J. F., & Hadad, C. Z. (2015). Selective catalytic activation of acetylene by a neutral gold cluster of experimentally known gas-phase geometry. Journal of Physical Chemistry C, 119(14), 7755-7764. doi:10.1021/jp512989q | spa |
dc.relation.references | Geudtner, G., Domínguez-Soria, V. D., Calaminici, P., & Köster, A. M. (2015). Molecular graphs of lin, nan and cun (n=6-9) clusters from the density and the molecular electrostatic potential. Computational and Theoretical Chemistry, 1053, 337-342. doi:10.1016/j.comptc.2014.07.021 | spa |
dc.relation.references | Gillespie, R. J. (2008). Fifty years of the VSEPR model. Coordination Chemistry Reviews, 252(12-14), 1315-1327. doi:10.1016/j.ccr.2007.07.007 | spa |
dc.relation.references | Gillespie, R. J. (1970). The electron-pair repulsion model for molecular geometry. Journal of Chemical Education, 47(1), 18-23. | spa |
dc.relation.references | Gillespie, R. J., & Nyholm, R. S. (1957). Inorganic stereochemistry. Quarterly Reviews, Chemical Society, 11(4), 339-380. | spa |
dc.relation.references | Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. | spa |
dc.relation.references | Gruene, P., Rayner, D. M., Redlich, B., Van Der Meer, A. F. G., Lyon, J. T., Meijer, G., & Fielicke, A. (2008). Structures of neutral Au7, Au19, and Au20 clusters in the gas phase. Science, 321(5889), 674-676. doi:10.1126/science.1161166 | spa |
dc.relation.references | Guan, G., Liu, S., Cai, Y., Low, M., Bharathi, M. S., Zhang, S., . . . Han, M. -. (2014). Destabilization of gold clusters for controlled nanosynthesis: From clusters to polyhedra. Advanced Materials, 26(21), 3427-3432. doi:10.1002/adma.201306167 | spa |
dc.relation.references | Gupta, R. P. (1981). Lattice relaxation at a metal surface. Physical Review B, 23(12), 6265-6270. doi:10.1103/PhysRevB.23.6265 | spa |
dc.relation.references | Guzmán-Ramírez, G., Aguilera-Granja, F., & Robles, J. (2010). DFT and GEGA genetic algorithm optimized structures of cun ν (ν=±1,0,2; N=3-13) clusters. European Physical Journal D, 57(1), 49-60. doi:10.1140/epjd/e2010-00001-4 | spa |
dc.relation.references | Jin, M., Hao, G., Sun, X., & Chen, W. (2012). Nanoparticle-based positron emission tomography and single photon emission computed tomography imaging of cancer. Rev.Nanosci.Nanotechnol. 1. | spa |
dc.relation.references | Jin, R., Zeng, C., Zhou, M., & Chen, Y. (2016). Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chemical Reviews, 116(18), 10346-10413. doi:10.1021/acs.chemrev.5b00703 | spa |
dc.relation.references | Jug, K., Zimmermann, B., Calaminici, P., & Köster, A. M. (2002). Structure and stability of small copper clusters. Journal of Chemical Physics, 116(11), 4497-4507. doi:10.1063/1.1436465 | spa |
dc.relation.references | Kabir, M., Mookerjee, A., & Bhattacharya, A. K. (2004). Structure and stability of copper clusters: A tight-binding molecular dynamics study. Physical Review A - Atomic, Molecular, and Optical Physics, 69(4), 043203-1-043203-10. doi:10.1103/PhysRevA.69.043203 | spa |
dc.relation.references | Lewis, G. N. (1916). The atom and the molecule. Journal of the American Chemical Society, 38(4), 762-785. doi:10.1021/ja02261a002 | spa |
dc.relation.references | Luo, C. (2000). Structure of small nickel clusters: Ni2-Ni19. Modelling and Simulation in Materials Science and Engineering, 8(2), 95-102. doi:10.1088/0965-0393/8/2/301 | spa |
dc.relation.references | Mátyus, E., Hutter, J., Müller-Herold, U., & Reiher, M. (2011). Extracting elements of molecular structure from the all-particle wave function. Journal of Chemical Physics, 135(20) doi:10.1063/1.3662487 | spa |
dc.relation.references | Mátyus, E., Hutter, J., Müller-Herold, U., & Reiher, M. (2011). On the emergence of molecular structure. Physical Review A - Atomic, Molecular, and Optical Physics, 83(5) doi:10.1103/PhysRevA.83.052512 | spa |
dc.relation.references | Mátyus, E., & Reiher, M. (2012). Molecular structure calculations: A unified quantum mechanical description of electrons and nuclei using explicitly correlated gaussian functions and the global vector representation. Journal of Chemical Physics, 137(2) doi:10.1063/1.4731696 | spa |
dc.relation.references | Mehta, D., Chen, J., Chen, D. Z., Kusumaatmaja, H., & Wales, D. J. (2016). Kinetic transition networks for the thomson problem and smale's seventh problem. Physical Review Letters, 117(2) doi:10.1103/PhysRevLett.117.028301 | spa |
dc.relation.references | Mehta, D., Chen, T., Hauenstein, J. D., & Wales, D. J. (2014). Communication: Newton homotopies for sampling stationary points of potential energy landscapes. Journal of Chemical Physics, 141(12) doi:10.1063/1.4896657 | spa |
dc.relation.references | Mehta, D., Chen, T., Morgan, J. W. R., & Wales, D. J. (2015). Exploring the potential energy landscape of the thomson problem via newton homotopies. Journal of Chemical Physics, 142(19) doi:10.1063/1.4921163 | spa |
dc.relation.references | Mitchell, M. (1996). An Introduction to Genetic Algorithms. | spa |
dc.relation.references | Mitzinger, S., Broeckaert, L., Massa, W., Weigend, F., & Dehnen, S. (2016). Understanding of multimetallic cluster growth. Nature Communications, 7 doi:10.1038/ncomms10480 | spa |
dc.relation.references | Parks, E. K., Zhu, L., Ho, J., & Riley, S. J. (1994). The structure of small nickel clusters. I. Ni3-Ni15. The Journal of Chemical Physics, 100(10), 7206-7222. | spa |
dc.relation.references | Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/PhysRevLett.77.3865 | spa |
dc.relation.references | Péreza, J. F., Florez, E., Hadad, C. Z., Fuentealba, P., & Restrepo, A. (2008). Stochastic search of the quantum conformational space of small lithium and bimetallic lithium-sodium clusters. Journal of Physical Chemistry A, 112(25), 5749-5755. doi:10.1021/jp802176w | spa |
dc.relation.references | Pillardy, J., Liwo, A., & Scheraga, H. A. (1999). An efficient deformation-based global optimization method (self-consistent basin-to-deformed-basin mapping (SCBDBM)). Application to lennard-jones atomic clusters. Journal of Physical Chemistry A, 103(46), 9370-9377. | spa |
dc.relation.references | Rakhmanov, E. A., Saff, E. B., & Zhou, Y. M. (1995). Computational Methods and Function Theory 1994 (Penang), 293-309. | spa |
dc.relation.references | Rastogi, S. K., Denn, B. D., & Branen, A. L. (2012). Synthesis of highly fluorescent and thio-linkers stabilize gold quantum dots and nano clusters in DMF for bio-labeling. Journal of Nanoparticle Research, 14(1) doi:10.1007/s11051-011-0673-8 | spa |
dc.relation.references | Schebarchov, D., & Wales, D. J. (2015). Quasi-combinatorial energy landscapes for nanoalloy structure optimisation. Physical Chemistry Chemical Physics, 17(42), 28331-28338. doi:10.1039/c5cp01198a | spa |
dc.relation.references | Smale, S. (1998). Mathematical problems for the next century. Mathematical Intelligencer, 20(2), 7-15. | spa |
dc.relation.references | Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., & Sánchez-Portal, D. (2002). The SIESTA method for ab initio order-N materials simulation. Journal of Physics Condensed Matter, 14(11), 2745-2779. doi:10.1088/0953-8984/14/11/302 | spa |
dc.relation.references | Sperling, G. (1960). Lösung einer elementargeometrischen frage von FEJES TÒTH. Archiv Der Mathematik, 11(1), 69-71. doi:10.1007/BF01236910 | spa |
dc.relation.references | Stephen Berry, R. (1960). Correlation of rates of intramolecular tunneling processes, with application to some group V compounds. The Journal of Chemical Physics, 32(3), 933-938. | spa |
dc.relation.references | Stewart, J. J. P. (2007). Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. Journal of Molecular Modeling, 13(12), 1173-1213. doi:10.1007/s00894-007-0233-4 | spa |
dc.relation.references | Szabó, I., Fábri, C., Czakó, G., Mátyus, E., & Császár, A. G. (2012). Temperature-dependent, effective structures of the 14NH 3 and 14ND 3 molecules. Journal of Physical Chemistry A, 116(17), 4356-4362. doi:10.1021/jp211802y | spa |
dc.relation.references | Thomson, J. J. (1904). On the structure of the atom. Philos.Mag., 7(39), 237-265. | spa |
dc.relation.references | Tóth, L. F. (1959). Über eine punktverteilung auf der kugel. Acta Mathematica Academiae Scientiarum Hungaricae, 10(1-2), 13-19. doi:10.1007/BF02063286 | spa |
dc.relation.references | Tsuchida, R. (1939). New simple valency theory. J.Chem.Soc.Jpn.(in Japanese), 60, 245-256. | spa |
dc.relation.references | Wales, D. J., & Doye, J. P. K. (1997). Global optimization by basin-hopping and the lowest energy structures of lennard-jones clusters containing up to 110 atoms. Journal of Physical Chemistry A, 101(28), 5111-5116. doi:10.1021/jp970984n | spa |
dc.relation.references | Wales, D. J., Doye, J. P. K., Dullweber, A., Hodges, M. P., Calvo, F. Y. N. F., Hernández-Rojas, J., & Middleton, T. F. (2016). The Cambridge Energy Landscape Database. | spa |
dc.relation.references | Wales, D. J., & Scheraga, H. A. (1999). Global optimization of clusters, crystals, and biomolecules. Science, 285(5432), 1368-1372. doi:10.1126/science.285.5432.1368 | spa |
dc.relation.references | Zhang, J., & Dolg, M. (2015). ABCluster: The artificial bee colony algorithm for cluster global optimization. Physical Chemistry Chemical Physics, 17(37), 24173-24181. doi:10.1039/c5cp04060d | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | spa |
dc.identifier.instname | instname:Universidad de Medellín | spa |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Indexados Scopus [1813]