Mostrar el registro sencillo del ítem

dc.creatorAcelas N.Y.spa
dc.creatorHadad C.spa
dc.creatorRestrepo A.spa
dc.creatorIbarguen C.spa
dc.creatorFlórez E.spa
dc.date.accessioned2017-12-19T19:36:44Z
dc.date.available2017-12-19T19:36:44Z
dc.date.created2017
dc.identifier.issn201669
dc.identifier.urihttp://hdl.handle.net/11407/4283
dc.description.abstractIn this work, we used density functional theory calculations to study the resulting complexes of adsorption and of inner- and outer-sphere adsorption-like of bicarbonate and nitrate over Fe-(hydr)oxide surfaces using acidic, neutral, and basic simulated pH conditions. High-spin states that follow the 5N + 1 (N is the number of Fe atoms, each having five unpaired electrons) rule are preferred. Monodentate mononuclear (MM1) surface complexes are shown to lead to the most favorable thermodynamic adsorption for both bicarbonate and nitrate with −63.91 and −28.25 kJ/mol, respectively, under neutral conditions. Our results suggest that four types of regular and charged-assisted hydrogen bonds are involved in the adsorption process; all of them can be classified as closed-shell (long-range or ionic). The formal charges induce unusually short and strong hydrogen bonds. The ability of high multiplicity states of Fe clusters to adsorb oxyanions in solvated environments arises from orbital interactions: the 4s virtual orbitals in Fe have a large affinity for the 2p-type electron pairs of oxygens. © 2017 American Chemical Society.eng
dc.language.isoeng
dc.publisherAmerican Chemical Societyspa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85018400304&doi=10.1021%2facs.inorgchem.7b00513&partnerID=40&md5=0f0ed31db5796b23540d9095320bb02dspa
dc.sourceScopusspa
dc.titleAdsorption of Nitrate and Bicarbonate on Fe-(Hydr)oxidespa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.contributor.affiliationAcelas, N.Y., Grupo de Materiales con Impacto, Matandmpac. Facultad de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiaspa
dc.contributor.affiliationHadad, C., Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombiaspa
dc.contributor.affiliationRestrepo, A., Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombiaspa
dc.contributor.affiliationIbarguen, C., Grupo de Materiales con Impacto, Matandmpac. Facultad de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombiaspa
dc.contributor.affiliationFlórez, E., Grupo de Materiales con Impacto, Matandmpac. Facultad de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiaspa
dc.identifier.doi10.1021/acs.inorgchem.7b00513
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.abstractIn this work, we used density functional theory calculations to study the resulting complexes of adsorption and of inner- and outer-sphere adsorption-like of bicarbonate and nitrate over Fe-(hydr)oxide surfaces using acidic, neutral, and basic simulated pH conditions. High-spin states that follow the 5N + 1 (N is the number of Fe atoms, each having five unpaired electrons) rule are preferred. Monodentate mononuclear (MM1) surface complexes are shown to lead to the most favorable thermodynamic adsorption for both bicarbonate and nitrate with −63.91 and −28.25 kJ/mol, respectively, under neutral conditions. Our results suggest that four types of regular and charged-assisted hydrogen bonds are involved in the adsorption process; all of them can be classified as closed-shell (long-range or ionic). The formal charges induce unusually short and strong hydrogen bonds. The ability of high multiplicity states of Fe clusters to adsorb oxyanions in solvated environments arises from orbital interactions: the 4s virtual orbitals in Fe have a large affinity for the 2p-type electron pairs of oxygens. © 2017 American Chemical Society.eng
dc.creator.affiliationGrupo de Materiales con Impacto, Matandmpac. Facultad de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiaspa
dc.creator.affiliationInstituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombiaspa
dc.relation.ispartofesInorganic Chemistryspa
dc.relation.ispartofesInorganic Chemistry Volume 56, Issue 9, 1 May 2017, Pages 5455-5464spa
dc.relation.referencesAcelas, N., Hincapié, G., Guerra, D., David, J., & Restrepo, A. (2013). Structures, energies, and bonding in the water heptamer. Journal of Chemical Physics, 139(4) doi:10.1063/1.4816371spa
dc.relation.referencesAcelas, N. Y., Martin, B. D., López, D., & Jefferson, B. (2015). Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media. Chemosphere, 119, 1353-1360. doi:10.1016/j.chemosphere.2014.02.024spa
dc.relation.referencesAcelas, N. Y., Mejia, S. M., Mondragón, F., & Flórez, E. (2013). Density functional theory characterization of phosphate and sulfate adsorption on fe-(hydr)oxide: Reactivity, pH effect, estimation of gibbs free energies, and topological analysis of hydrogen bonds. Computational and Theoretical Chemistry, 1005, 16-24. doi:10.1016/j.comptc.2012.11.002spa
dc.relation.referencesAdamescu, A., Hamilton, I. P., & Al-Abadleh, H. A. (2014). Density functional theory calculations on the complexation of p-arsanilic acid with hydrated iron oxide clusters: Structures, reaction energies, and transition states. Journal of Physical Chemistry A, 118(30), 5667-5679. doi:10.1021/jp504710bspa
dc.relation.referencesAlkorta, I., Rozas, I., & Elguero, J. (1998). Bond length-electron density relationships: From covalent bonds to hydrogen bond interactions. Structural Chemistry, 9(4), 243-247.spa
dc.relation.referencesAlkorta, I., Rozas, I., & Elguero, J. (1998). Isocyanides as hydrogen bond acceptors. Theoretical Chemistry Accounts, 99(2), 116-123.spa
dc.relation.referencesBader, R. F. W. (1990). Atoms in Molecules: A Quantum Theory.spa
dc.relation.referencesBaltrusaitis, J., Jensen, J. H., & Grassian, V. H. (2006). FTIR spectroscopy combined with isotope labeling and quantum chemical calculations to investigate adsorbed bicarbonate formation following reaction of carbon dioxide with surface hydroxyl groups on Fe2O3 and Al2O3. Journal of Physical Chemistry B, 110(24), 12005-12016. doi:10.1021/jp057437jspa
dc.relation.referencesBaltrusaitis, J., Schuttlefield, J., Jensen, J. H., & Grassian, V. H. (2007). FTIR spectroscopy combined with quantum chemical calculations to investigate adsorbed nitrate on aluminium oxide surfaces in the presence and absence of co-adsorbed water. Physical Chemistry Chemical Physics, 9(36), 4970-4980. doi:10.1039/b705189aspa
dc.relation.referencesBaltrusaitis, J., Schuttlefield, J., Zeitler, E., & Grassian, V. H. (2011). Carbon dioxide adsorption on oxide nanoparticle surfaces. Chemical Engineering Journal, 170(2-3), 471-481. doi:10.1016/j.cej.2010.12.041spa
dc.relation.referencesBargar, J. R., Kubicki, J. D., Reitmeyer, R., & Davis, J. A. (2005). ATR-FTIR spectroscopic characterization of coexisting carbonate surface complexes on hematite. Geochimica Et Cosmochimica Acta, 69(6), 1527-1542. doi:10.1016/j.gca.2004.08.002spa
dc.relation.referencesBargar, J. R., Reitmeyer, R., Lenhart, J. J., & Davis, J. A. (2000). Characterization of U(VI)-carbonato ternary complexes on hematite: EXAFS and electrophoretic mobility measurements. Geochimica Et Cosmochimica Acta, 64(16), 2737-2749. doi:10.1016/S0016-7037(00)00398-7spa
dc.relation.referencesBeheshtian, J., Peyghan, A. A., & Bagheri, Z. (2012). Nitrate adsorption by carbon nanotubes in the vacuum and aqueous phase. Monatshefte Fur Chemie, 143(12), 1623-1626. doi:10.1007/s00706-012-0738-0spa
dc.relation.referencesBhatnagar, A., & Sillanpää, M. (2011). A review of emerging adsorbents for nitrate removal from water. Chemical Engineering Journal, 168(2), 493-504. doi:10.1016/j.cej.2011.01.103spa
dc.relation.referencesBlaney, L. M., Cinar, S., & SenGupta, A. K. (2007). Hybrid anion exchanger for trace phosphate removal from water and wastewater. Water Research, 41(7), 1603-1613. doi:10.1016/j.watres.2007.01.008spa
dc.relation.referencesBoukhalfa, C. (2010). Sulfate removal from aqueous solutions by hydrous iron oxide in the presence of heavy metals and competitive anions. macroscopic and spectroscopic analyses. Desalination, 250(1), 428-432. doi:10.1016/j.desal.2009.09.070spa
dc.relation.referencesChernyshova, I. V., Ponnurangam, S., & Somasundaran, P. (2013). Linking interfacial chemistry of CO2 to surface structures of hydrated metal oxide nanoparticles: Hematite. Physical Chemistry Chemical Physics, 15(18), 6953-6964. doi:10.1039/c3cp44264kspa
dc.relation.referencesEspinosa, E., Alkorta, I., Elguero, J., & Molins, E. (2002). From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-H⋯F-Y systems. Journal of Chemical Physics, 117(12), 5529-5542. doi:10.1063/1.1501133spa
dc.relation.referencesFlórez, E., Acelas, N. Y., Ibargüen, C., Mondal, S., Cabellos, J. L., Merino, G., & Restrepo, A. (2016). Microsolvation of NO3 -: Structural exploration and bonding analysis. RSC Advances, 6(76), 71913-71923. doi:10.1039/c6ra15059dspa
dc.relation.referencesFrisch, M. J. (2009). Gaussian 09.spa
dc.relation.referencesGao, Y., & Mucci, A. (2003). Individual and competitive adsorption of phosphate and arsenate on goethite in artificial seawater. Chemical Geology, 199(1-2), 91-109. doi:10.1016/S0009-2541(03)00119-0spa
dc.relation.referencesGeelhoed, J. S., Hiemstra, T., & Van Riemsdijk, W. H. (1997). Phosphate and sulfate adsorption on goethite: Single anion and competitive adsorption. Geochimica Et Cosmochimica Acta, 61(12), 2389-2396. doi:10.1016/S0016-7037(97)00096-3spa
dc.relation.referencesGillespie, R. J., & Popelier, P. L. A. (2001). Chemical Bonding and Molecular Geometry.spa
dc.relation.referencesGonzalez, J. D., Florez, E., Romero, J., Reyes, A., & Restrepo, A. (2013). Microsolvation of Mg2+, Ca2+: Strong influence of formal charges in hydrogen bond networks. Journal of Molecular Modeling, 19(4), 1763-1777. doi:10.1007/s00894-012-1716-5spa
dc.relation.referencesHe, G., Zhang, M., & Pan, G. (2009). Influence of pH on initial concentration effect of arsenate adsorption on TiO2 surfaces: Thermodynamic, DFT, and EXAFS interpretations. Journal of Physical Chemistry C, 113(52), 21679-21686. doi:10.1021/jp906019espa
dc.relation.referencesHincapié, G., Acelas, N., Castaño, M., David, J., & Restrepo, A. (2010). Structural studies of the water hexamer. Journal of Physical Chemistry A, 114(29), 7809-7814. doi:10.1021/jp103683mspa
dc.relation.referencesIbargüen, C., Manrique-Moreno, M., Hadad, C. Z., David, J., & Restrepo, A. (2013). Microsolvation of dimethylphosphate: A molecular model for the interaction of cell membranes with water. Physical Chemistry Chemical Physics, 15(9), 3203-3211. doi:10.1039/c2cp42778hspa
dc.relation.referencesKanematsu, M., Young, T. M., Fukushi, K., Sverjensky, D. A., Green, P. G., & Darby, J. L. (2011). Quantification of the effects of organic and carbonate buffers on arsenate and phosphate adsorption on a goethite-based granular porous adsorbent. Environmental Science and Technology, 45(2), 561-568. doi:10.1021/es1026745spa
dc.relation.referencesKnop, O., Rankin, K. N., & Boyd, R. J. (2001). Coming to grips with N-H⋯N bonds. 1. distance relationships and electron density at the bond critical point. Journal of Physical Chemistry A, 105(26), 6552-6566. doi:10.1021/jp0106348spa
dc.relation.referencesLv, L., Sun, P., Gu, Z., Du, H., Pang, X., Tao, X., . . . Xu, L. (2009). Removal of chloride ion from aqueous solution by ZnAl-NO3 layered double hydroxides as anion-exchanger. Journal of Hazardous Materials, 161(2-3), 1444-1449. doi:10.1016/j.jhazmat.2008.04.114spa
dc.relation.referencesPaul, K. W., Kubicki, J. D., & Sparks, D. L. (2006). Quantum chemical calculations of sulfate adsorption at the AI- and fe-(hydr)oxide-H2O interface - estimation of gibbs free energies. Environmental Science and Technology, 40(24), 7717-7724. doi:10.1021/es061139yspa
dc.relation.referencesPedersen, O., Colmer, T. D., & Sand-Jensen, K. (2013). Underwater photosynthesis of submerged plants - recent advances and methods. Frontiers in Plant Science, 4(MAY) doi:10.3389/fpls.2013.00140spa
dc.relation.referencesPérez, J. F., Hadad, C. Z., & Restrepo, A. (2008). Structural studies of the water tetramer. International Journal of Quantum Chemistry, 108(10), 1653-1659. doi:10.1002/qua.21615spa
dc.relation.referencesPérez, J. F., & Restrepo, A. (2008). ASCEC V-02.spa
dc.relation.referencesPéreza, J. F., Florez, E., Hadad, C. Z., Fuentealba, P., & Restrepo, A. (2008). Stochastic search of the quantum conformational space of small lithium and bimetallic lithium-sodium clusters. Journal of Physical Chemistry A, 112(25), 5749-5755. doi:10.1021/jp802176wspa
dc.relation.referencesPonnurangam, S., Chernyshova, I. V., & Somasundaran, P. (2010). Effect of coadsorption of electrolyte ions on the stability of inner-sphere complexes. Journal of Physical Chemistry C, 114(39), 16517-16524. doi:10.1021/jp105084hspa
dc.relation.referencesPopelier, P. L. A. (2000). Atoms in Molecules.an Introduction.spa
dc.relation.referencesRahnemaie, R., Hiemstra, T., & van Riemsdijk, W. H. (2007). Carbonate adsorption on goethite in competition with phosphate. Journal of Colloid and Interface Science, 315(2), 415-425. doi:10.1016/j.jcis.2007.07.017spa
dc.relation.referencesRamírez, F., Hadad, C. Z., Guerra, D., David, J., & Restrepo, A. (2011). Structural studies of the water pentamer. Chemical Physics Letters, 507(4-6), 229-233. doi:10.1016/j.cplett.2011.03.084spa
dc.relation.referencesRojas-Valencia, N., Ibargüen, C., & Restrepo, A. (2015). Molecular interactions in the microsolvation of dimethylphosphate. Chemical Physics Letters, 635, 301-305. doi:10.1016/j.cplett.2015.06.064spa
dc.relation.referencesRomero, J., Reyes, A., David, J., & Restrepo, A. (2011). Understanding microsolvation of li+: Structural and energetical analyses. Physical Chemistry Chemical Physics, 13(33), 15264-15271. doi:10.1039/c1cp20903espa
dc.relation.referencesRozas, I., Alkorta, I., & Elguero, J. (2000). Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. Journal of the American Chemical Society, 122(45), 11154-11161. doi:10.1021/ja0017864spa
dc.relation.referencesSarkar, S., Chatterjee, P. K., Cumbal, L. H., & SenGupta, A. K. (2011). Hybrid ion exchanger supported nanocomposites: Sorption and sensing for environmental applications. Chemical Engineering Journal, 166(3), 923-931. doi:10.1016/j.cej.2010.11.075spa
dc.relation.referencesScott, A. P., & Radom, L. (1996). Harmonic vibrational frequencies: An evaluation of hartree-fock, møller-plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors.Journal of Physical Chemistry, 100(41), 16502-16513. doi:10.1021/jp960976rspa
dc.relation.referencesShah, B., & Chudasama, U. (2014). Synthesis and characterization of a novel hybrid material as amphoteric ion exchanger for simultaneous removal of cations and anions. Journal of Hazardous Materials, 276, 138-148. doi:10.1016/j.jhazmat.2014.05.031spa
dc.relation.referencesWeinhold, F., & Landis, C. R. (2012). Discovering Chemistry with Natural Bond Orbitals.spa
dc.relation.referencesWijnja, H., & Schulthess, C. P. (2001). Division S-2 - soil chemistry: Carbonate adsorption mechanism on goethite studied with ATR-FTIR, DRIFT, and proton coadsorption measurements. Soil Science Society of America Journal, 65(2), 324-330spa
dc.relation.referencesWu, Q., Chen, F., Xu, Y., & Yu, Y. (2015). Simultaneous removal of cations and anions from waste water by bifunctional mesoporous silica. Applied Surface Science, 351, 155-163. doi:10.1016/j.apsusc.2015.05.118spa
dc.relation.referencesXia, Y., Jiao, X., Liu, Y., Chen, D., Zhang, L., & Qin, Z. (2013). Study of the formation mechanism of boehmite with different morphology upon surface hydroxyls and adsorption of chloride ions. Journal of Physical Chemistry C, 117(29), 15279-15286. doi:10.1021/jp402530sspa
dc.relation.referencesZapata-Escobar, A., Manrique-Moreno, M., Guerra, D., Hadad, C. Z., & Restrepo, A. (2014). A combined experimental and computational study of the molecular interactions between anionic ibuprofen and water. Journal of Chemical Physics, 140(18) doi:10.1063/1.4874258spa
dc.relation.referencesZelmanov, G., & Semiat, R. (2015). The influence of competitive inorganic ions on phosphate removal from water by adsorption on iron (Fe+3) oxide/hydroxide nanoparticles-based agglomerates. Journal of Water Process Engineering, 5, 143-152. doi:10.1016/j.jwpe.2014.06.008spa
dc.relation.referencesZhao, D., & Sengupta, A. K. (1998). Ultimate removal of phosphate from wastewater using a new class of polymeric ion exchangers. Water Research, 32(5), 1613-1625. doi:10.1016/S0043-1354(97)00371-0spa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem