Mostrar el registro sencillo del ítem

dc.creatorJimenez-Orozco C.spa
dc.creatorFlorez E.spa
dc.creatorMoreno A.spa
dc.creatorLiu P.spa
dc.creatorRodriguez J.A.spa
dc.date.accessioned2017-12-19T19:36:44Z
dc.date.available2017-12-19T19:36:44Z
dc.date.created2017
dc.identifier.issn19327447
dc.identifier.urihttp://hdl.handle.net/11407/4284
dc.description.abstractMo2C catalysts are widely used in hydrogenation reactions; however, the role of the C and Mo terminations in these catalysts is not clear. Understanding the binding of adsorbates is key for explaining the activity of Mo2C. The adsorption of acetylene and ethylene, probe molecules representing alkynes and olefins, respectively, was studied on a β-Mo2C(100) surface with C and Mo terminations using calculations based on periodic density functional theory. Moreover, the role of the C/Mo molar ratio was investigated to compare the catalytic potential of cubic (δ-MoC) and orthorhombic (β-Mo2C) surfaces. The geometry and electronic properties of the clean δ-MoC(001) and β-Mo2C(100) surfaces have a strong influence on the binding of unsaturated hydrocarbons. The adsorption of ethylene is weaker than that of acetylene on the surfaces of the cubic and orthorhombic systems; adsorption of the hydrocarbons was stronger on β-Mo2C(100) than on δ-MoC(001). The C termination in β-Mo2C(100) actively participates in both acetylene and ethylene adsorption and is not merely a spectator. The results of this work suggest that the β-Mo2C(100)-C surface could be the one responsible for the catalytic activity during the hydrogenation of unsaturated C≡C and C=C bonds, while the Mo-terminated surface could be poisoned or transformed by the strong adsorption of C and CHx fragments. (Chemical Equation Presented). © 2017 American Chemical Society.eng
dc.language.isoeng
dc.publisherAmerican Chemical Societyspa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85029514849&doi=10.1021%2facs.jpcc.7b05442&partnerID=40&md5=e98cf75bdd9602a6f351521524d6b1f5spa
dc.sourceScopusspa
dc.titleAcetylene and Ethylene Adsorption on a β-Mo2C(100) Surface: A Periodic DFT Study on the Role of C- and Mo-Terminations for Bonding and Hydrogenation Reactionsspa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.contributor.affiliationJimenez-Orozco, C., Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombiaspa
dc.contributor.affiliationFlorez, E., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No 30-65, Medellín, Colombiaspa
dc.contributor.affiliationMoreno, A., Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombiaspa
dc.contributor.affiliationLiu, P., Chemistry Department, Brookhaven National Laboratory, Upton, NY, United Statesspa
dc.contributor.affiliationRodriguez, J.A., Chemistry Department, Brookhaven National Laboratory, Upton, NY, United Statesspa
dc.identifier.doi10.1021/acs.jpcc.7b05442
dc.subject.keywordAcetyleneeng
dc.subject.keywordAdsorptioneng
dc.subject.keywordBinseng
dc.subject.keywordCatalyst activityeng
dc.subject.keywordCatalystseng
dc.subject.keywordChemical bondseng
dc.subject.keywordDensity functional theoryeng
dc.subject.keywordElectronic propertieseng
dc.subject.keywordEthyleneeng
dc.subject.keywordHydrocarbonseng
dc.subject.keywordLightingeng
dc.subject.keywordCatalytic potentialeng
dc.subject.keywordChemical equationseng
dc.subject.keywordEthylene adsorptioneng
dc.subject.keywordHydrogenation reactionseng
dc.subject.keywordMo-terminated surfaceeng
dc.subject.keywordOrthorhombic systemseng
dc.subject.keywordPeriodic density functional theoryeng
dc.subject.keywordUnsaturated hydrocarbonseng
dc.subject.keywordHydrogenationeng
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.abstractMo2C catalysts are widely used in hydrogenation reactions; however, the role of the C and Mo terminations in these catalysts is not clear. Understanding the binding of adsorbates is key for explaining the activity of Mo2C. The adsorption of acetylene and ethylene, probe molecules representing alkynes and olefins, respectively, was studied on a β-Mo2C(100) surface with C and Mo terminations using calculations based on periodic density functional theory. Moreover, the role of the C/Mo molar ratio was investigated to compare the catalytic potential of cubic (δ-MoC) and orthorhombic (β-Mo2C) surfaces. The geometry and electronic properties of the clean δ-MoC(001) and β-Mo2C(100) surfaces have a strong influence on the binding of unsaturated hydrocarbons. The adsorption of ethylene is weaker than that of acetylene on the surfaces of the cubic and orthorhombic systems; adsorption of the hydrocarbons was stronger on β-Mo2C(100) than on δ-MoC(001). The C termination in β-Mo2C(100) actively participates in both acetylene and ethylene adsorption and is not merely a spectator. The results of this work suggest that the β-Mo2C(100)-C surface could be the one responsible for the catalytic activity during the hydrogenation of unsaturated C≡C and C=C bonds, while the Mo-terminated surface could be poisoned or transformed by the strong adsorption of C and CHx fragments. (Chemical Equation Presented). © 2017 American Chemical Society.eng
dc.creator.affiliationQuímica de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombiaspa
dc.creator.affiliationDepartamento de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No 30-65, Medellín, Colombiaspa
dc.creator.affiliationChemistry Department, Brookhaven National Laboratory, Upton, NY, United Statesspa
dc.relation.ispartofesJournal of Physical Chemistry Cspa
dc.relation.ispartofesJournal of Physical Chemistry C Volume 121, Issue 36, 14 September 2017, Pages 19786-19795spa
dc.relation.referencesArdakani, S. J., Liu, X., & Smith, K. J. (2007). Hydrogenation and ring opening of naphthalene on bulk and supported Mo2C catalysts. Applied Catalysis A: General, 324(1-2), 9-19. doi:10.1016/j.apcata.2007.02.048spa
dc.relation.referencesChoi, J. -., Bugli, G., & Djéga-Mariadassou, G. (2000). Influence of the degree of carburization on the density of sites and hydrogenating activity of molybdenum carbides. Journal of Catalysis, 193(2), 238-247. doi:10.1006/jcat.2000.2894spa
dc.relation.referencesChristensen, A. N. (1977). A neutron diffraction investigation on a crystal of alpha-Mo2C. Acta Chem.Scand., 31, 509-511.spa
dc.relation.referencesClark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I. J., Refson, K., & Payne, M. C. (2005). First principles methods using CASTEP. Zeitschrift Fur Kristallographie, 220(5-6), 567-570. doi:10.1524/zkri.220.5.567.65075spa
dc.relation.referencesDhandapani, B., St. Clair, T., & Oyama, S. T. (1998). Simultaneous hydrodesulfurization, hydrodeoxygenation, and hydrogenation with molybdenum carbide. Applied Catalysis A: General, 168(2), 219-228.spa
dc.relation.referencesEspinoza-Monjardín, Cruz-Reyes, J., Del Valle-Granados, M., Flores-Aquino, E., Avalos-Borja, M., & Fuentes-Moyado, S. (2008). Synthesis, characterization and catalytic activity in the hydrogenation of cyclohexene with molybdenum carbide. Catalysis Letters, 120(1-2), 137-142. doi:10.1007/s10562-007-9264-9spa
dc.relation.referencesFlorez, E., Gomez, T., Rodriguez, J. A., & Illas, F. (2011). On the dissociation of molecular hydrogen by au supported on transition metal carbides: Choice of the most active support. Physical Chemistry Chemical Physics, 13(15), 6865-6871. doi:10.1039/c0cp02882gspa
dc.relation.referencesFrühberger, B., & Chen, J. G. (1996). Reaction of ethylene with clean and carbide-modified mo(110): Converting surface reactivities of molybdenum to pt-group metals. Journal of the American Chemical Society, 118(46), 11599-11609. doi:10.1021/ja960656lspa
dc.relation.referencesGallaway, W. S., & Barker, E. F. (1942). The infra-red absorption spectra of ethylene and tetra-deutero-ethylene under high resolution. The Journal of Chemical Physics, 10(2), 88-97.spa
dc.relation.referencesGao, F., Wang, Y., & Tysoe, W. T. (2006). Ethylene hydrogenation on mo(CO)6 derived model catalysts in ultrahigh vacuum: From oxycarbide to carbide to MoAl alloy. Journal of Molecular Catalysis A: Chemical, 249(1-2), 111-122. doi:10.1016/j.molcata.2006.01.016spa
dc.relation.referencesGomez, T., Florez, E., Rodriguez, J. A., & Illas, F. (2011). Reactivity of transition metals (pd, pt, cu, ag, au) toward molecular hydrogen dissociation: Extended surfaces versus particles supported on TiC(001) or small is not always better and large is not always bad. Journal of Physical Chemistry C, 115(23), 11666-11672. doi:10.1021/jp2024445spa
dc.relation.referencesGovender, A., Curulla Ferré, D., & Niemantsverdriet, J. W. (2012). A density functional theory study on the effect of zero-point energy corrections on the methanation profile on fe(100). ChemPhysChem, 13(6), 1591-1596. doi:10.1002/cphc.201100733spa
dc.relation.referencesGrev, R. S., Janssen, C. L., & Schaefer III, H. F. (1991). Concerning zero-point vibrational energy corrections to electronic energies. The Journal of Chemical Physics, 95(7), 5128-5132.spa
dc.relation.referencesGrimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27(15), 1787-1799. doi:10.1002/jcc.20495spa
dc.relation.referencesHerzberg, G., & Stoicheff, B. P. (1955). Carbon-carbon and carbon-hydrogen distances in simple polyatomic molecules [4]. Nature, 175(4445), 79-80. doi:10.1038/175079a0spa
dc.relation.referencesHou, R., Chang, K., Chen, J. G., & Wang, T. (2015). Top.Catal., 58, 240-246.spa
dc.relation.referencesHugosson, H. W., Eriksson, O., Nordström, L., Jansson, U., Fast, L., Delin, A., . . . Johansson, B. (1999). Theory of phase stabilities and bonding mechanisms in stoichiometric and substoichiometric molybdenum carbide. Journal of Applied Physics, 86(7), 3758-3767.spa
dc.relation.referencesHwu, H. H., & Chen, J. G. (2005). Surface chemistry of transition metal carbides. Chemical Reviews, 105(1), 185-212. doi:10.1021/cr0204606spa
dc.relation.referencesJimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., & Rodriguez, J. A. (2017). Acetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces: A comprehensive periodic DFT study. Physical Chemistry Chemical Physics, 19(2) doi:10.1039/c6cp07400fspa
dc.relation.referencesJimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., & Rodriguez, J. A. (2016). Systematic theoretical study of ethylene adsorption on δ-MoC(001), TiC(001), and ZrC(001) surfaces. Journal of Physical Chemistry C, 120(25), 13531-13540. doi:10.1021/acs.jpcc.6b03106spa
dc.relation.referencesKresse, G., & Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B - Condensed Matter and Materials Physics, 54(16), 11169-11186.spa
dc.relation.referencesLee, J. S., Volpe, L., Ribeiro, F. H., & Boudart, M. (1988). Molybdenum carbide catalysts. II. topotactic synthesis of unsupported powders. Journal of Catalysis, 112(1), 44-53. doi:10.1016/0021-9517(88)90119-4spa
dc.relation.referencesLiu, H., Zhu, J., Lai, Z., Zhao, R., & He, D. (2009). A first-principles study on structural and electronic properties of Mo2C. Scripta Materialia, 60(11), 949-952. doi:10.1016/j.scriptamat.2009.02.010spa
dc.relation.referencesLiu, P., & Rodriguez, J. A. (2006). Water-gas-shift reaction on molybdenum carbide surfaces: Essential role of the oxycarbide. Journal of Physical Chemistry B, 110(39), 19418-19425. doi:10.1021/jp0621629spa
dc.relation.referencesLuo, Q., Wang, T., Walther, G., Beller, M., & Jiao, H. (2014). Molybdenum carbide catalysed hydrogen production from formic acid - A density functional theory study. Journal of Power Sources, 246, 548-555. doi:10.1016/j.jpowsour.2013.07.102spa
dc.relation.referencesMonkhorst, H. J., & Pack, J. D. (1976). Special points for brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. doi:10.1103/PhysRevB.13.5188spa
dc.relation.referencesOshikawa, K., Nagai, M., & Omi, S. (2001). Characterization of molybdenum carbides for methane reforming by TPR, XRD, and XPS. Journal of Physical Chemistry B, 105(38), 9124-9131. doi:10.1021/jp0111867spa
dc.relation.referencesOyama, S. T. (1996). The Chemistry of Transition Metal Carbides and Nitrides.spa
dc.relation.referencesParthe, E., & Sadagopan, V. (1963). The structure of dimolybdenum carbide by neutron diffraction technique. Acta Crystallogr. 16(3).spa
dc.relation.referencesPerdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/PhysRevLett.77.3865spa
dc.relation.referencesPoliti, J. R. D. S., Viñes, F., Rodriguez, J. A., & Illas, F. (2013). Atomic and electronic structure of molybdenum carbide phases: Bulk and low miller-index surfaces. Physical Chemistry Chemical Physics, 15(30), 12617-12625. doi:10.1039/c3cp51389kspa
dc.relation.referencesPosada-Pérez, S., Dos Santos Politi, J. R., Viñes, F., & Illas, F. (2015). Methane capture at room temperature: Adsorption on cubic δ-MoC and orthorhombic β-Mo2C molybdenum carbide (001) surfaces. RSC Advances, 5(43), 33737-33746. doi:10.1039/c4ra17225fspa
dc.relation.referencesPosada-Pérez, S., Viñes, F., Ramirez, P. J., Vidal, A. B., Rodriguez, J. A., & Illas, F. (2014). The bending machine: CO2 activation and hydrogenation on δ-MoC(001) and β-Mo2C(001) surfaces. Physical Chemistry Chemical Physics, 16(28), 14912-14921. doi:10.1039/c4cp01943aspa
dc.relation.referencesPosada-Pérez, S., Viñes, F., Rodriguez, J. A., & Illas, F. (2015). Fundamentals of methanol synthesis on metal carbide based catalysts: Activation of CO2 and H2. Topics in Catalysis, 58(2-3), 159-173. doi:10.1007/s11244-014-0355-8spa
dc.relation.referencesPosada-Pérez, S., Viñes, F., Valero, R., Rodriguez, J. A., & Illas, F. (2017). Adsorption and dissociation of molecular hydrogen on orthorhombic β-Mo2C and cubic δ-MoC (001) surfaces. Surface Science, 656, 24-32. doi:10.1016/j.susc.2016.10.001spa
dc.relation.referencesQi, K. -., Wang, G. -., & Zheng, W. -. (2013). Structure-sensitivity of ethane hydrogenolysis over molybdenum carbides: A density functional theory study. Applied Surface Science, 276, 369-376. doi:10.1016/j.apsusc.2013.03.099spa
dc.relation.referencesRocha, A. S., Rocha, A. B., & da Silva, V. T. (2010). Benzene adsorption on Mo2C: A theoretical and experimental study. Applied Catalysis A: General, 379(1-2), 54-60. doi:10.1016/j.apcata.2010.02.032spa
dc.relation.referencesRodriguez, J. A., Dvorak, J., & Jirsak, T. (2000). Chemistry of thiophene on mo(110), MoCx and MoSx surfaces: Photoemission studies. Surface Science, 457(1), L413-L420. doi:10.1016/S0039-6028(00)00416-7spa
dc.relation.referencesSchaidle, J. A., Blackburn, J., Farberow, C. A., Nash, C., Steirer, K. X., Clark, J., . . . Ruddy, D. A. (2016). Experimental and computational investigation of acetic acid deoxygenation over oxophilic molybdenum carbide: Surface chemistry and active site identity. ACS Catalysis, 6(2), 1181-1197. doi:10.1021/acscatal.5b01930spa
dc.relation.referencesSchaidle, J. A., & Thompson, L. T. (2015). Fischer-tropsch synthesis over early transition metal carbides and nitrides: CO activation and chain growth. Journal of Catalysis, 329, 325-334. doi:10.1016/j.jcat.2015.05.020spa
dc.relation.referencesSchweitzer, N. M., Schaidle, J. A., Ezekoye, O. K., Pan, X., Linic, S., & Thompson, L. T. (2011). High activity carbide supported catalysts for water gas shift. Journal of the American Chemical Society, 133(8), 2378-2381. doi:10.1021/ja110705aspa
dc.relation.referencesShi, X. -., Wang, S. -., Wang, H., Deng, C. -., Qin, Z., & Wang, J. (2009). Structure and stability of β-Mo2C bulk and surfaces: A density functional theory study. Surface Science, 603(6), 852-859. doi:10.1016/j.susc.2009.01.041spa
dc.relation.referencesShi, Y., Yang, Y., Li, Y. -., & Jiao, H. (2016). Activation mechanisms of H2, O2, H2O, CO2, CO, CH4 and C2Hx on metallic Mo2C(001) as well as Mo/C terminated Mo2C(101) from density functional theory computations. Applied Catalysis A: General, 524, 223-236. doi:10.1016/j.apcata.2016.07.003spa
dc.relation.referencesVanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41(11), 7892-7895. doi:10.1103/PhysRevB.41.7892spa
dc.relation.referencesViñes, F., Sousa, C., Illas, F., Liu, P., & Rodriguez, J. A. (2007). A systematic density functional study of molecular oxygen adsorption and dissociation on the (001) surface of group IV-VI transition metal carbides. Journal of Physical Chemistry C, 111(45), 16982-16989. doi:10.1021/jp0754987spa
dc.relation.referencesVines, F., Sousa, C., Liu, P., Rodriguez, J. A., & Illas, F. (2005). A systematic density functional theory study of the electronic structure of bulk and (001) surface of transition-metals carbides. Journal of Chemical Physics, 122(17) doi:10.1063/1.1888370spa
dc.relation.referencesVitale, G., Guzmán, H., Frauwallner, M. L., Scott, C. E., & Pereira-Almao, P. (2015). Synthesis of nanocrystalline molybdenum carbide materials and their characterization. Catalysis Today, 250, 123-133. doi:10.1016/j.cattod.2014.05.011spa
dc.relation.referencesWang, T., Li, Y. -., Wang, J., Beller, M., & Jiao, H. (2014). Dissociative hydrogen adsorption on the hexagonal Mo2C phase at high coverage. Journal of Physical Chemistry C, 118(15), 8079-8089. doi:10.1021/jp501471uspa
dc.relation.referencesWang, T., Li, Y. -., Wang, J., Beller, M., & Jiao, H. (2014). High coverage CO adsorption and dissociation on the orthorhombic mo 2C(100) surface. Journal of Physical Chemistry C, 118(6), 3162-3171. doi:10.1021/jp412067xspa
dc.relation.referencesWyvratt, B. M., Gaudet, J. R., & Thompson, L. T. (2015). Effects of passivation on synthesis, structure and composition of molybdenum carbide supported platinum water-gas shift catalysts. Journal of Catalysis, 330, 280-287. doi:10.1016/j.jcat.2015.07.023spa
dc.relation.referencesXu, W., Ramirez, P. J., Stacchiola, D., & Rodriguez, J. A. (2014). Synthesis of α-MoC1-x and β-MoCy catalysts for CO2 hydrogenation by thermal carburization of mo-oxide in hydrocarbon and hydrogen mixtures. Catalysis Letters, 144(8), 1418-1424. doi:10.1007/s10562-014-1278-5spa
dc.relation.referencesZhang, J., Wu, W., & Liu, S. (2014). In situ IR spectroscopic study on the hydrogenation of 1, 3-butadiene on fresh MO2C/γ-A1203 catalyst. China Petroleum Processing and Petrochemical Technology, 16(4), 32-37.spa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem