Show simple item record

dc.creatorJimenez-Orozco C.spa
dc.creatorFlorez E.spa
dc.creatorMoreno A.spa
dc.creatorLiu P.spa
dc.creatorRodriguez J.A.spa
dc.date.accessioned2017-12-19T19:36:44Z
dc.date.available2017-12-19T19:36:44Z
dc.date.created2017
dc.identifier.issn14639076
dc.identifier.urihttp://hdl.handle.net/11407/4285
dc.description.abstractA comprehensive study of acetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces was carried out by means of calculations based on periodic density functional theory, using the Perdew-Burke-Ernzerhof exchange-correlation functional. It was found that the bonding of acetylene was significantly affected by the electronic and structural properties of the carbide surfaces. The adsorbate interacted with metal and/or carbon sites of the carbide. The interaction of acetylene with the TiC(001) and ZrC(001) surfaces was strong (binding energies higher than -3.5 eV), while moderate acetylene adsorption energies were observed on δ-MoC(001) (-1.78 eV to -0.66 eV). Adsorption energies, charge density difference plots and Mulliken charges suggested that the binding of the hydrocarbon to the surface had both ionic and covalent contributions. According to the C-C bond lengths obtained, the adsorbed molecule was modified from acetylene-like into ethylene-like on the δ-MoC(001) surface (desired behavior for hydrogenation reactions) but into ethane-like on TiC(001) and ZrC(001). The obtained results suggest that the δ-MoC(001) surface is expected to have the best performance in selective hydrogenation reactions to convert alkynes into alkenes. Another advantage of δ-MoC(001) is that, after C2H2adsorption, surface carbon sites remain available, which are necessary for H2dissociation. However, these sites were occupied when C2H2was adsorbed on TiC(001) and ZrC(001), limiting their application in the hydrogenation of alkynes. © the Owner Societies 2016.eng
dc.language.isoeng
dc.publisherRoyal Society of Chemistryspa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85016930582&doi=10.1039%2fc6cp07400f&partnerID=40&md5=1b7d3c762d099284ac8ff7e17406c853spa
dc.sourceScopusspa
dc.titleAcetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces: A comprehensive periodic DFT studyspa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.contributor.affiliationJimenez-Orozco, C., Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombiaspa
dc.contributor.affiliationFlorez, E., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No 30-65, Medellín, Colombiaspa
dc.contributor.affiliationMoreno, A., Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombiaspa
dc.contributor.affiliationLiu, P., Chemistry Department, Brookhaven National Laboratory, Upton, NY, United Statesspa
dc.contributor.affiliationRodriguez, J.A., Chemistry Department, Brookhaven National Laboratory, Upton, NY, United Statesspa
dc.identifier.doi10.1039/c6cp07400f
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.abstractA comprehensive study of acetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces was carried out by means of calculations based on periodic density functional theory, using the Perdew-Burke-Ernzerhof exchange-correlation functional. It was found that the bonding of acetylene was significantly affected by the electronic and structural properties of the carbide surfaces. The adsorbate interacted with metal and/or carbon sites of the carbide. The interaction of acetylene with the TiC(001) and ZrC(001) surfaces was strong (binding energies higher than -3.5 eV), while moderate acetylene adsorption energies were observed on δ-MoC(001) (-1.78 eV to -0.66 eV). Adsorption energies, charge density difference plots and Mulliken charges suggested that the binding of the hydrocarbon to the surface had both ionic and covalent contributions. According to the C-C bond lengths obtained, the adsorbed molecule was modified from acetylene-like into ethylene-like on the δ-MoC(001) surface (desired behavior for hydrogenation reactions) but into ethane-like on TiC(001) and ZrC(001). The obtained results suggest that the δ-MoC(001) surface is expected to have the best performance in selective hydrogenation reactions to convert alkynes into alkenes. Another advantage of δ-MoC(001) is that, after C2H2adsorption, surface carbon sites remain available, which are necessary for H2dissociation. However, these sites were occupied when C2H2was adsorbed on TiC(001) and ZrC(001), limiting their application in the hydrogenation of alkynes. © the Owner Societies 2016.eng
dc.creator.affiliationQuímica de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombiaspa
dc.creator.affiliationDepartamento de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No 30-65, Medellín, Colombiaspa
dc.creator.affiliationChemistry Department, Brookhaven National Laboratory, Upton, NY, United Statesspa
dc.relation.ispartofesPhysical Chemistry Chemical Physicsspa
dc.relation.ispartofesPhysical Chemistry Chemical Physics Volume 19, Issue 2, 2017spa
dc.relation.referencesArdakani, S. J., Liu, X., & Smith, K. J. (2007). Hydrogenation and ring opening of naphthalene on bulk and supported Mo2C catalysts. Applied Catalysis A: General, 324(1-2), 9-19. doi:10.1016/j.apcata.2007.02.048spa
dc.relation.referencesArdakani, S. J., & Smith, K. J. (2011). A comparative study of ring opening of naphthalene, tetralin and decalin over Mo2C/HY and Pd/HY catalysts. Applied Catalysis A: General, 403(1-2), 36-47. doi:10.1016/j.apcata.2011.06.013spa
dc.relation.referencesBasaran, D., Aleksandrov, H. A., Chen, Z. -., Zhao, Z. -., & Rösch, N. (2011). Decomposition of ethylene on transition metal surfaces M(1 1 1). A comparative DFT study of model reactions for M = pd, pt, rh, ni. Journal of Molecular Catalysis A: Chemical, 344(1-2), 37-46. doi:10.1016/j.molcata.2011.04.019spa
dc.relation.referencesChang, C. -., Yeh, C. -., & Ho, J. -. (2013). Theoretical study of selective hydrogenation in a mixture of acetylene and ethylene over Fe@W(1 1 1) bimetallic surfaces. Applied Catalysis A: General, 462-463, 296-301. doi:10.1016/j.apcata.2013.05.014spa
dc.relation.referencesClark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I. J., Refson, K., & Payne, M. C. (2005). First principles methods using CASTEP. Zeitschrift Fur Kristallographie, 220(5-6), 567-570. doi:10.1524/zkri.220.5.567.65075spa
dc.relation.referencesCui, X., Zhou, X., Chen, H., Hua, Z., Wu, H., He, Q., . . . Shi, J. (2011). In-situ carbonization synthesis and ethylene hydrogenation activity of ordered mesoporous tungsten carbide. International Journal of Hydrogen Energy, 36(17), 10513-10521. doi:10.1016/j.ijhydene.2011.06.050spa
dc.relation.referencesDhandapani, B., St. Clair, T., & Oyama, S. T. (1998). Simultaneous hydrodesulfurization, hydrodeoxygenation, and hydrogenation with molybdenum carbide. Applied Catalysis A: General, 168(2), 219-228.spa
dc.relation.referencesFlorez, E., Gomez, T., Rodriguez, J. A., & Illas, F. (2011). On the dissociation of molecular hydrogen by au supported on transition metal carbides: Choice of the most active support. Physical Chemistry Chemical Physics, 13(15), 6865-6871. doi:10.1039/c0cp02882gspa
dc.relation.referencesGomez, T., Florez, E., Rodriguez, J. A., & Illas, F. (2011). Reactivity of transition metals (pd, pt, cu, ag, au) toward molecular hydrogen dissociation: Extended surfaces versus particles supported on TiC(001) or small is not always better and large is not always bad. Journal of Physical Chemistry C, 115(23), 11666-11672. doi:10.1021/jp2024445spa
dc.relation.referencesHartley, F. R. (1972). Metal‐Olefin and ‐Acetylene bonding in complexes. Angewandte Chemie International Edition in English, 11(7), 596-606. doi:10.1002/anie.197205961spa
dc.relation.referencesHerzberg, G., & Stoicheff, B. P. (1955). Carbon-carbon and carbon-hydrogen distances in simple polyatomic molecules [4]. Nature, 175(4445), 79-80. doi:10.1038/175079a0spa
dc.relation.referencesJimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., & Rodriguez, J. A. (2016). Systematic theoretical study of ethylene adsorption on δ-MoC(001), TiC(001), and ZrC(001) surfaces. Journal of Physical Chemistry C, 120(25), 13531-13540. doi:10.1021/acs.jpcc.6b03106spa
dc.relation.referencesJin, Y., Datye, A. K., Rightor, E., Gulotty, R., Waterman, W., Smith, M., . . . Blacksony, J. (2001). The influence of catalyst restructuring on the selective hydrogenation of acetylene to ethylene. Journal of Catalysis, 203(2), 292-306. doi:10.1006/jcat.2001.3347spa
dc.relation.referencesKojima, I., Miyazaki, E., Inoue, Y., & Yasumori, I. (1982). Catalysis by transition metal carbides. IV. mechanism of ethylene hydrogenation and the nature of active sites on tantalum monocarbide. Journal of Catalysis, 73(1), 128-135. doi:10.1016/0021-9517(82)90087-2spa
dc.relation.referencesKojima, I., Miyazaki, E., Inoue, Y., & Yasumori, I. (1979). Catalytic activities of TiC, WC, and TaC for hydrogenation of ethylene. Journal of Catalysis, 59(3), 472-474. doi:10.1016/S0021-9517(79)80019-6spa
dc.relation.referencesLevy, R. B., & Boudart, M. (1973). Platinum-like behavior of tungsten carbide in surface catalysis. Science, 181(4099), 547-549.spa
dc.relation.referencesLiu, P., & Rodriguez, J. A. (2006). Water-gas-shift reaction on molybdenum carbide surfaces: Essential role of the oxycarbide. Journal of Physical Chemistry B, 110(39), 19418-19425. doi:10.1021/jp0621629spa
dc.relation.referencesMassera, C., & Frenking, G. (2003). Energy partitioning analysis of the bonding in L2TM-C2H2 and L2TM-C2H4 (TM = ni, pd, pt; L2 = (PH3)2, (PMe3)2, H2PCH2PH2, H2P(CH2)2PH2). Organometallics, 22(13), 2758-2765. doi:10.1021/om0301637spa
dc.relation.referencesMcCue, A. J., & Anderson, J. A. (2015). Recent advances in selective acetylene hydrogenation using palladium containing catalysts. Frontiers of Chemical Science and Engineering, 9(2), 142-153. doi:10.1007/s11705-015-1516-4spa
dc.relation.referencesMei, D., Sheth, P. A., Neurock, M., & Smith, C. M. (2006). First-principles-based kinetic monte carlo simulation of the selective hydrogenation of acetylene over pd(111). Journal of Catalysis, 242(1), 1-15. doi:10.1016/j.jcat.2006.05.009spa
dc.relation.referencesMonkhorst, H. J., & Pack, J. D. (1976). Special points for brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. doi:10.1103/PhysRevB.13.5188spa
dc.relation.referencesMoskaleva, L. V., Chen, Z. -., Aleksandrov, H. A., Mohammed, A. B., Sun, Q., & Rösch, N. (2009). Ethylene conversion to ethylidyne over pd(111): Revisiting the mechanism with first-principles calculations.Journal of Physical Chemistry C, 113(6), 2512-2520. doi:10.1021/jp8082562spa
dc.relation.referencesNechaev, M. S., Rayon, V. M., & Frenking, G. (2004). Energy partitioning analysis of the bonding in ethylene and acetylene complexes of group 6, 8, and 11 metals: (CO)5TM-C2H x and Cl4TM-C2Hx (TM = cr, mo, W), (CO)4TM-C2Hx (TM = fe, ru, os), and TM +-C2Hx (TM = cu, ag, au). Journal of Physical Chemistry A, 108(15), 3134-3142. doi:10.1021/jp031185+spa
dc.relation.referencesNeyman, K. M., & Schauermann, S. (2010). Hydrogen diffusion into palladium nanoparticles: Pivotal promotion by carbon. Angewandte Chemie - International Edition, 49(28), 4743-4746. doi:10.1002/anie.200904688spa
dc.relation.referencesPerdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/PhysRevLett.77.3865spa
dc.relation.referencesPoliti, J. R. D. S., Viñes, F., Rodriguez, J. A., & Illas, F. (2013). Atomic and electronic structure of molybdenum carbide phases: Bulk and low miller-index surfaces. Physical Chemistry Chemical Physics, 15(30), 12617-12625. doi:10.1039/c3cp51389kspa
dc.relation.referencesPosada-Pérez, S., Dos Santos Politi, J. R., Viñes, F., & Illas, F. (2015). Methane capture at room temperature: Adsorption on cubic δ-MoC and orthorhombic β-Mo2C molybdenum carbide (001) surfaces. RSC Advances, 5(43), 33737-33746. doi:10.1039/c4ra17225fspa
dc.relation.referencesPosada-Pérez, S., Viñes, F., Ramirez, P. J., Vidal, A. B., Rodriguez, J. A., & Illas, F. (2014). The bending machine: CO2 activation and hydrogenation on δ-MoC(001) and β-Mo2C(001) surfaces. Physical Chemistry Chemical Physics, 16(28), 14912-14921. doi:10.1039/c4cp01943aspa
dc.relation.referencesPosada-Pérez, S., Viñes, F., Rodriguez, J. A., & Illas, F. (2015). Fundamentals of methanol synthesis on metal carbide based catalysts: Activation of CO2 and H2. Topics in Catalysis, 58(2-3), 159-173. doi:10.1007/s11244-014-0355-8spa
dc.relation.referencesRocha, A. S., Rocha, A. B., & da Silva, V. T. (2010). Benzene adsorption on Mo2C: A theoretical and experimental study. Applied Catalysis A: General, 379(1-2), 54-60. doi:10.1016/j.apcata.2010.02.032spa
dc.relation.referencesSautet, P., & Paul, J. -. (1991). Low temperature adsorption of ethylene and butadiene on platinum and palladium surfaces: A theoretical study of the diσ/π competition. Catalysis Letters, 9(3-4), 245-260. doi:10.1007/BF00773183spa
dc.relation.referencesSheth, P. A., Neurock, M., & Smith, C. M. (2003). A first-principles analysis of acetylene hydrogenation over pd(111). Journal of Physical Chemistry B, 107(9), 2009-2017. doi:10.1021/jp021342pspa
dc.relation.referencesSorescu, D. C., & Jordan, K. D. (2000). Theoretical study of the adsorption of acetylene on the si(001) surface. Journal of Physical Chemistry B, 104(34), 8259-8267. doi:10.1021/jp001353nspa
dc.relation.referencesSpiewak, B. E., Cortright, R. D., & Dumesic, J. A. (1998). Microcalorimetric studies of H2, C2H4, and C2H2 adsorption on pt powder. Journal of Catalysis, 176(2), 405-414. doi:10.1006/jcat.1998.2047spa
dc.relation.referencesStachurski, J., & Fra̧ckiewicz, A. (1985). A new phase in the pd-C system formed during the catalytic hydrogenation of acetylene. Journal of the Less-Common Metals, 108(2), 249-256. doi:10.1016/0022-5088(85)90219-Xspa
dc.relation.referencesStudt, F., Abild-Pedersen, F., Bligaard, T., Sørensen, R. Z., Christensen, C. H., & Nørskov, J. K. (2008). Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science, 320(5881), 1320-1322. doi:10.1126/science.1156660spa
dc.relation.referencesVanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41(11), 7892-7895. doi:10.1103/PhysRevB.41.7892spa
dc.relation.referencesVértes, G., Horányi, G., & Szakács, S. (1973). Selective catalytic behaviour of tungsten carbide in the liquid-phase hydrogenation of organic compounds. Journal of the Chemical Society, Perkin Transactions 2, (10), 1400-1402.spa
dc.relation.referencesViñes, F., Sousa, C., Illas, F., Liu, P., & Rodriguez, J. A. (2007). A systematic density functional study of molecular oxygen adsorption and dissociation on the (001) surface of group IV-VI transition metal carbides. Journal of Physical Chemistry C, 111(45), 16982-16989. doi:10.1021/jp0754987spa
dc.relation.referencesViñes, F., Sousa, C., Liu, P., Rodriguez, J. A., & Illas, F. (2005). J.Chem.Phys., 122.spa
dc.relation.referencesWieferink, J., Krüger, P., & Pollmann, J. (2006). Phys.Rev.B: Condens.Matter Mater.Phys., 73.spa
dc.relation.referencesWieferink, J., Krüger, P., & Pollmann, J. (2006). Phys.Rev.B: Condens.Matter Mater.Phys., 74.spa
dc.relation.referencesXu, W., Ramirez, P. J., Stacchiola, D., & Rodriguez, J. A. (2014). Synthesis of α-MoC1-x and β-MoCy catalysts for CO2 hydrogenation by thermal carburization of mo-oxide in hydrocarbon and hydrogen mixtures. Catalysis Letters, 144(8), 1418-1424. doi:10.1007/s10562-014-1278-5spa
dc.relation.referencesYang, B., Burch, R., Hardacre, C., Hu, P., & Hughes, P. (2016). Importance of surface carbide formation on the activity and selectivity of pd surfaces in the selective hydrogenation of acetylene. Surface Science, 646, 45-49. doi:10.1016/j.susc.2015.07.015spa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record