dc.creator | Jimenez-Orozco C. | spa |
dc.creator | Florez E. | spa |
dc.creator | Moreno A. | spa |
dc.creator | Liu P. | spa |
dc.creator | Rodriguez J.A. | spa |
dc.date.accessioned | 2017-12-19T19:36:44Z | |
dc.date.available | 2017-12-19T19:36:44Z | |
dc.date.created | 2017 | |
dc.identifier.issn | 14639076 | |
dc.identifier.uri | http://hdl.handle.net/11407/4285 | |
dc.description.abstract | A comprehensive study of acetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces was carried out by means of calculations based on periodic density functional theory, using the Perdew-Burke-Ernzerhof exchange-correlation functional. It was found that the bonding of acetylene was significantly affected by the electronic and structural properties of the carbide surfaces. The adsorbate interacted with metal and/or carbon sites of the carbide. The interaction of acetylene with the TiC(001) and ZrC(001) surfaces was strong (binding energies higher than -3.5 eV), while moderate acetylene adsorption energies were observed on δ-MoC(001) (-1.78 eV to -0.66 eV). Adsorption energies, charge density difference plots and Mulliken charges suggested that the binding of the hydrocarbon to the surface had both ionic and covalent contributions. According to the C-C bond lengths obtained, the adsorbed molecule was modified from acetylene-like into ethylene-like on the δ-MoC(001) surface (desired behavior for hydrogenation reactions) but into ethane-like on TiC(001) and ZrC(001). The obtained results suggest that the δ-MoC(001) surface is expected to have the best performance in selective hydrogenation reactions to convert alkynes into alkenes. Another advantage of δ-MoC(001) is that, after C2H2adsorption, surface carbon sites remain available, which are necessary for H2dissociation. However, these sites were occupied when C2H2was adsorbed on TiC(001) and ZrC(001), limiting their application in the hydrogenation of alkynes. © the Owner Societies 2016. | eng |
dc.language.iso | eng | |
dc.publisher | Royal Society of Chemistry | spa |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85016930582&doi=10.1039%2fc6cp07400f&partnerID=40&md5=1b7d3c762d099284ac8ff7e17406c853 | spa |
dc.source | Scopus | spa |
dc.title | Acetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces: A comprehensive periodic DFT study | spa |
dc.type | Article | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.contributor.affiliation | Jimenez-Orozco, C., Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia | spa |
dc.contributor.affiliation | Florez, E., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No 30-65, Medellín, Colombia | spa |
dc.contributor.affiliation | Moreno, A., Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia | spa |
dc.contributor.affiliation | Liu, P., Chemistry Department, Brookhaven National Laboratory, Upton, NY, United States | spa |
dc.contributor.affiliation | Rodriguez, J.A., Chemistry Department, Brookhaven National Laboratory, Upton, NY, United States | spa |
dc.identifier.doi | 10.1039/c6cp07400f | |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.abstract | A comprehensive study of acetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces was carried out by means of calculations based on periodic density functional theory, using the Perdew-Burke-Ernzerhof exchange-correlation functional. It was found that the bonding of acetylene was significantly affected by the electronic and structural properties of the carbide surfaces. The adsorbate interacted with metal and/or carbon sites of the carbide. The interaction of acetylene with the TiC(001) and ZrC(001) surfaces was strong (binding energies higher than -3.5 eV), while moderate acetylene adsorption energies were observed on δ-MoC(001) (-1.78 eV to -0.66 eV). Adsorption energies, charge density difference plots and Mulliken charges suggested that the binding of the hydrocarbon to the surface had both ionic and covalent contributions. According to the C-C bond lengths obtained, the adsorbed molecule was modified from acetylene-like into ethylene-like on the δ-MoC(001) surface (desired behavior for hydrogenation reactions) but into ethane-like on TiC(001) and ZrC(001). The obtained results suggest that the δ-MoC(001) surface is expected to have the best performance in selective hydrogenation reactions to convert alkynes into alkenes. Another advantage of δ-MoC(001) is that, after C2H2adsorption, surface carbon sites remain available, which are necessary for H2dissociation. However, these sites were occupied when C2H2was adsorbed on TiC(001) and ZrC(001), limiting their application in the hydrogenation of alkynes. © the Owner Societies 2016. | eng |
dc.creator.affiliation | Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia | spa |
dc.creator.affiliation | Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No 30-65, Medellín, Colombia | spa |
dc.creator.affiliation | Chemistry Department, Brookhaven National Laboratory, Upton, NY, United States | spa |
dc.relation.ispartofes | Physical Chemistry Chemical Physics | spa |
dc.relation.ispartofes | Physical Chemistry Chemical Physics Volume 19, Issue 2, 2017 | spa |
dc.relation.references | Ardakani, S. J., Liu, X., & Smith, K. J. (2007). Hydrogenation and ring opening of naphthalene on bulk and supported Mo2C catalysts. Applied Catalysis A: General, 324(1-2), 9-19. doi:10.1016/j.apcata.2007.02.048 | spa |
dc.relation.references | Ardakani, S. J., & Smith, K. J. (2011). A comparative study of ring opening of naphthalene, tetralin and decalin over Mo2C/HY and Pd/HY catalysts. Applied Catalysis A: General, 403(1-2), 36-47. doi:10.1016/j.apcata.2011.06.013 | spa |
dc.relation.references | Basaran, D., Aleksandrov, H. A., Chen, Z. -., Zhao, Z. -., & Rösch, N. (2011). Decomposition of ethylene on transition metal surfaces M(1 1 1). A comparative DFT study of model reactions for M = pd, pt, rh, ni. Journal of Molecular Catalysis A: Chemical, 344(1-2), 37-46. doi:10.1016/j.molcata.2011.04.019 | spa |
dc.relation.references | Chang, C. -., Yeh, C. -., & Ho, J. -. (2013). Theoretical study of selective hydrogenation in a mixture of acetylene and ethylene over Fe@W(1 1 1) bimetallic surfaces. Applied Catalysis A: General, 462-463, 296-301. doi:10.1016/j.apcata.2013.05.014 | spa |
dc.relation.references | Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I. J., Refson, K., & Payne, M. C. (2005). First principles methods using CASTEP. Zeitschrift Fur Kristallographie, 220(5-6), 567-570. doi:10.1524/zkri.220.5.567.65075 | spa |
dc.relation.references | Cui, X., Zhou, X., Chen, H., Hua, Z., Wu, H., He, Q., . . . Shi, J. (2011). In-situ carbonization synthesis and ethylene hydrogenation activity of ordered mesoporous tungsten carbide. International Journal of Hydrogen Energy, 36(17), 10513-10521. doi:10.1016/j.ijhydene.2011.06.050 | spa |
dc.relation.references | Dhandapani, B., St. Clair, T., & Oyama, S. T. (1998). Simultaneous hydrodesulfurization, hydrodeoxygenation, and hydrogenation with molybdenum carbide. Applied Catalysis A: General, 168(2), 219-228. | spa |
dc.relation.references | Florez, E., Gomez, T., Rodriguez, J. A., & Illas, F. (2011). On the dissociation of molecular hydrogen by au supported on transition metal carbides: Choice of the most active support. Physical Chemistry Chemical Physics, 13(15), 6865-6871. doi:10.1039/c0cp02882g | spa |
dc.relation.references | Gomez, T., Florez, E., Rodriguez, J. A., & Illas, F. (2011). Reactivity of transition metals (pd, pt, cu, ag, au) toward molecular hydrogen dissociation: Extended surfaces versus particles supported on TiC(001) or small is not always better and large is not always bad. Journal of Physical Chemistry C, 115(23), 11666-11672. doi:10.1021/jp2024445 | spa |
dc.relation.references | Hartley, F. R. (1972). Metal‐Olefin and ‐Acetylene bonding in complexes. Angewandte Chemie International Edition in English, 11(7), 596-606. doi:10.1002/anie.197205961 | spa |
dc.relation.references | Herzberg, G., & Stoicheff, B. P. (1955). Carbon-carbon and carbon-hydrogen distances in simple polyatomic molecules [4]. Nature, 175(4445), 79-80. doi:10.1038/175079a0 | spa |
dc.relation.references | Jimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., & Rodriguez, J. A. (2016). Systematic theoretical study of ethylene adsorption on δ-MoC(001), TiC(001), and ZrC(001) surfaces. Journal of Physical Chemistry C, 120(25), 13531-13540. doi:10.1021/acs.jpcc.6b03106 | spa |
dc.relation.references | Jin, Y., Datye, A. K., Rightor, E., Gulotty, R., Waterman, W., Smith, M., . . . Blacksony, J. (2001). The influence of catalyst restructuring on the selective hydrogenation of acetylene to ethylene. Journal of Catalysis, 203(2), 292-306. doi:10.1006/jcat.2001.3347 | spa |
dc.relation.references | Kojima, I., Miyazaki, E., Inoue, Y., & Yasumori, I. (1982). Catalysis by transition metal carbides. IV. mechanism of ethylene hydrogenation and the nature of active sites on tantalum monocarbide. Journal of Catalysis, 73(1), 128-135. doi:10.1016/0021-9517(82)90087-2 | spa |
dc.relation.references | Kojima, I., Miyazaki, E., Inoue, Y., & Yasumori, I. (1979). Catalytic activities of TiC, WC, and TaC for hydrogenation of ethylene. Journal of Catalysis, 59(3), 472-474. doi:10.1016/S0021-9517(79)80019-6 | spa |
dc.relation.references | Levy, R. B., & Boudart, M. (1973). Platinum-like behavior of tungsten carbide in surface catalysis. Science, 181(4099), 547-549. | spa |
dc.relation.references | Liu, P., & Rodriguez, J. A. (2006). Water-gas-shift reaction on molybdenum carbide surfaces: Essential role of the oxycarbide. Journal of Physical Chemistry B, 110(39), 19418-19425. doi:10.1021/jp0621629 | spa |
dc.relation.references | Massera, C., & Frenking, G. (2003). Energy partitioning analysis of the bonding in L2TM-C2H2 and L2TM-C2H4 (TM = ni, pd, pt; L2 = (PH3)2, (PMe3)2, H2PCH2PH2, H2P(CH2)2PH2). Organometallics, 22(13), 2758-2765. doi:10.1021/om0301637 | spa |
dc.relation.references | McCue, A. J., & Anderson, J. A. (2015). Recent advances in selective acetylene hydrogenation using palladium containing catalysts. Frontiers of Chemical Science and Engineering, 9(2), 142-153. doi:10.1007/s11705-015-1516-4 | spa |
dc.relation.references | Mei, D., Sheth, P. A., Neurock, M., & Smith, C. M. (2006). First-principles-based kinetic monte carlo simulation of the selective hydrogenation of acetylene over pd(111). Journal of Catalysis, 242(1), 1-15. doi:10.1016/j.jcat.2006.05.009 | spa |
dc.relation.references | Monkhorst, H. J., & Pack, J. D. (1976). Special points for brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. doi:10.1103/PhysRevB.13.5188 | spa |
dc.relation.references | Moskaleva, L. V., Chen, Z. -., Aleksandrov, H. A., Mohammed, A. B., Sun, Q., & Rösch, N. (2009). Ethylene conversion to ethylidyne over pd(111): Revisiting the mechanism with first-principles calculations.Journal of Physical Chemistry C, 113(6), 2512-2520. doi:10.1021/jp8082562 | spa |
dc.relation.references | Nechaev, M. S., Rayon, V. M., & Frenking, G. (2004). Energy partitioning analysis of the bonding in ethylene and acetylene complexes of group 6, 8, and 11 metals: (CO)5TM-C2H x and Cl4TM-C2Hx (TM = cr, mo, W), (CO)4TM-C2Hx (TM = fe, ru, os), and TM +-C2Hx (TM = cu, ag, au). Journal of Physical Chemistry A, 108(15), 3134-3142. doi:10.1021/jp031185+ | spa |
dc.relation.references | Neyman, K. M., & Schauermann, S. (2010). Hydrogen diffusion into palladium nanoparticles: Pivotal promotion by carbon. Angewandte Chemie - International Edition, 49(28), 4743-4746. doi:10.1002/anie.200904688 | spa |
dc.relation.references | Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/PhysRevLett.77.3865 | spa |
dc.relation.references | Politi, J. R. D. S., Viñes, F., Rodriguez, J. A., & Illas, F. (2013). Atomic and electronic structure of molybdenum carbide phases: Bulk and low miller-index surfaces. Physical Chemistry Chemical Physics, 15(30), 12617-12625. doi:10.1039/c3cp51389k | spa |
dc.relation.references | Posada-Pérez, S., Dos Santos Politi, J. R., Viñes, F., & Illas, F. (2015). Methane capture at room temperature: Adsorption on cubic δ-MoC and orthorhombic β-Mo2C molybdenum carbide (001) surfaces. RSC Advances, 5(43), 33737-33746. doi:10.1039/c4ra17225f | spa |
dc.relation.references | Posada-Pérez, S., Viñes, F., Ramirez, P. J., Vidal, A. B., Rodriguez, J. A., & Illas, F. (2014). The bending machine: CO2 activation and hydrogenation on δ-MoC(001) and β-Mo2C(001) surfaces. Physical Chemistry Chemical Physics, 16(28), 14912-14921. doi:10.1039/c4cp01943a | spa |
dc.relation.references | Posada-Pérez, S., Viñes, F., Rodriguez, J. A., & Illas, F. (2015). Fundamentals of methanol synthesis on metal carbide based catalysts: Activation of CO2 and H2. Topics in Catalysis, 58(2-3), 159-173. doi:10.1007/s11244-014-0355-8 | spa |
dc.relation.references | Rocha, A. S., Rocha, A. B., & da Silva, V. T. (2010). Benzene adsorption on Mo2C: A theoretical and experimental study. Applied Catalysis A: General, 379(1-2), 54-60. doi:10.1016/j.apcata.2010.02.032 | spa |
dc.relation.references | Sautet, P., & Paul, J. -. (1991). Low temperature adsorption of ethylene and butadiene on platinum and palladium surfaces: A theoretical study of the diσ/π competition. Catalysis Letters, 9(3-4), 245-260. doi:10.1007/BF00773183 | spa |
dc.relation.references | Sheth, P. A., Neurock, M., & Smith, C. M. (2003). A first-principles analysis of acetylene hydrogenation over pd(111). Journal of Physical Chemistry B, 107(9), 2009-2017. doi:10.1021/jp021342p | spa |
dc.relation.references | Sorescu, D. C., & Jordan, K. D. (2000). Theoretical study of the adsorption of acetylene on the si(001) surface. Journal of Physical Chemistry B, 104(34), 8259-8267. doi:10.1021/jp001353n | spa |
dc.relation.references | Spiewak, B. E., Cortright, R. D., & Dumesic, J. A. (1998). Microcalorimetric studies of H2, C2H4, and C2H2 adsorption on pt powder. Journal of Catalysis, 176(2), 405-414. doi:10.1006/jcat.1998.2047 | spa |
dc.relation.references | Stachurski, J., & Fra̧ckiewicz, A. (1985). A new phase in the pd-C system formed during the catalytic hydrogenation of acetylene. Journal of the Less-Common Metals, 108(2), 249-256. doi:10.1016/0022-5088(85)90219-X | spa |
dc.relation.references | Studt, F., Abild-Pedersen, F., Bligaard, T., Sørensen, R. Z., Christensen, C. H., & Nørskov, J. K. (2008). Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science, 320(5881), 1320-1322. doi:10.1126/science.1156660 | spa |
dc.relation.references | Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41(11), 7892-7895. doi:10.1103/PhysRevB.41.7892 | spa |
dc.relation.references | Vértes, G., Horányi, G., & Szakács, S. (1973). Selective catalytic behaviour of tungsten carbide in the liquid-phase hydrogenation of organic compounds. Journal of the Chemical Society, Perkin Transactions 2, (10), 1400-1402. | spa |
dc.relation.references | Viñes, F., Sousa, C., Illas, F., Liu, P., & Rodriguez, J. A. (2007). A systematic density functional study of molecular oxygen adsorption and dissociation on the (001) surface of group IV-VI transition metal carbides. Journal of Physical Chemistry C, 111(45), 16982-16989. doi:10.1021/jp0754987 | spa |
dc.relation.references | Viñes, F., Sousa, C., Liu, P., Rodriguez, J. A., & Illas, F. (2005). J.Chem.Phys., 122. | spa |
dc.relation.references | Wieferink, J., Krüger, P., & Pollmann, J. (2006). Phys.Rev.B: Condens.Matter Mater.Phys., 73. | spa |
dc.relation.references | Wieferink, J., Krüger, P., & Pollmann, J. (2006). Phys.Rev.B: Condens.Matter Mater.Phys., 74. | spa |
dc.relation.references | Xu, W., Ramirez, P. J., Stacchiola, D., & Rodriguez, J. A. (2014). Synthesis of α-MoC1-x and β-MoCy catalysts for CO2 hydrogenation by thermal carburization of mo-oxide in hydrocarbon and hydrogen mixtures. Catalysis Letters, 144(8), 1418-1424. doi:10.1007/s10562-014-1278-5 | spa |
dc.relation.references | Yang, B., Burch, R., Hardacre, C., Hu, P., & Hughes, P. (2016). Importance of surface carbide formation on the activity and selectivity of pd surfaces in the selective hydrogenation of acetylene. Surface Science, 646, 45-49. doi:10.1016/j.susc.2015.07.015 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | spa |
dc.identifier.instname | instname:Universidad de Medellín | spa |