dc.creator | Azhmyakov V. | spa |
dc.creator | Fernandez-Gutierrez J.P. | spa |
dc.creator | Pickl S. | spa |
dc.date.accessioned | 2017-12-19T19:36:45Z | |
dc.date.available | 2017-12-19T19:36:45Z | |
dc.date.created | 2017 | |
dc.identifier.issn | 11268042 | |
dc.identifier.uri | http://hdl.handle.net/11407/4286 | |
dc.description.abstract | Our paper discusses a novel computational approach to the extended Maximal Covering Location Problem (MCLP). We consider a fuzzy-type formulation of the generic MCLP and develop the necessary theoretical and numerical aspects of the proposed Separation Method (SM). A speciffic structure of the originally given MCLP makes it possible to reduce it to two auxiliary Knapsack-type problems. The equivalent separation we propose reduces essentially the complexity of the resulting computational algorithms. This algorithm also incorporates a conventional relaxation technique and the scalarizing method applied to an auxiliary multiobjective optimization problem. The proposed solution methodology is next applied to Supply Chain optimization in the presence of incomplete information. We study two illustrative examples and give a rigorous analysis of the obtained results. | eng |
dc.language.iso | eng | |
dc.publisher | Forum-Editrice Universitaria Udinese SRL | spa |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029392455&partnerID=40&md5=6a4351f1e2812f81178c421a301bbbbb | spa |
dc.source | Scopus | spa |
dc.title | A separation method for maximal covering location problems with fuzzy parameters | spa |
dc.type | Article | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.contributor.affiliation | Azhmyakov, V., Department of Basic Sciences, Universidad de Medellin, Medellin, Colombia | spa |
dc.contributor.affiliation | Fernandez-Gutierrez, J.P., Department of Basic Sciences, Universidad de Medellin, Medellin, Colombia | spa |
dc.contributor.affiliation | Pickl, S., Institut fur Theoretische Informatik, Mathematik und Operations Research, Fakultat fur Informatik, Universitat der Bundeswehr Munchen, Munchen, Germany | spa |
dc.subject.keyword | Integer optimization | eng |
dc.subject.keyword | MCLP | eng |
dc.subject.keyword | Numerical optimization | eng |
dc.subject.keyword | Integer programming | eng |
dc.subject.keyword | Multiobjective optimization | eng |
dc.subject.keyword | Numerical methods | eng |
dc.subject.keyword | Separation | eng |
dc.subject.keyword | Site selection | eng |
dc.subject.keyword | Supply chains | eng |
dc.subject.keyword | Computational algorithm | eng |
dc.subject.keyword | Integer optimization | eng |
dc.subject.keyword | Maximal covering location problems | eng |
dc.subject.keyword | Maximal covering location problems (MCLP) | eng |
dc.subject.keyword | MCLP | eng |
dc.subject.keyword | Multi-objective optimization problem | eng |
dc.subject.keyword | Numerical optimizations | eng |
dc.subject.keyword | Supply chain optimization | eng |
dc.subject.keyword | Optimization | eng |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.abstract | Our paper discusses a novel computational approach to the extended Maximal Covering Location Problem (MCLP). We consider a fuzzy-type formulation of the generic MCLP and develop the necessary theoretical and numerical aspects of the proposed Separation Method (SM). A speciffic structure of the originally given MCLP makes it possible to reduce it to two auxiliary Knapsack-type problems. The equivalent separation we propose reduces essentially the complexity of the resulting computational algorithms. This algorithm also incorporates a conventional relaxation technique and the scalarizing method applied to an auxiliary multiobjective optimization problem. The proposed solution methodology is next applied to Supply Chain optimization in the presence of incomplete information. We study two illustrative examples and give a rigorous analysis of the obtained results. | eng |
dc.creator.affiliation | Department of Basic Sciences, Universidad de Medellin, Medellin, Colombia | spa |
dc.creator.affiliation | Institut fur Theoretische Informatik, Mathematik und Operations Research, Fakultat fur Informatik, Universitat der Bundeswehr Munchen, Munchen, Germany | spa |
dc.relation.ispartofes | Italian Journal of Pure and Applied Mathematics | spa |
dc.relation.ispartofes | Italian Journal of Pure and Applied Mathematics Issue 38, July 2017, Pages 653-670 | spa |
dc.relation.references | Alexandris, G., & Giannikos, I. (2010). A new model for maximal coverage exploiting GIS capabilities. European Journal of Operational Research, 202(2), 328-338. doi:10.1016/j.ejor.2009.05.037 | spa |
dc.relation.references | Atkinson, K., & Han, W. (2001). Theoretical Numerical Analysis. | spa |
dc.relation.references | Aytug, H., & Saydam, C. (2002). Solving large-scale maximum expected covering location problems by genetic algorithms: A comparative study. European Journal of Operational Research, 141(3), 480-494. doi:10.1016/S0377-2217(01)00260-0 | spa |
dc.relation.references | Azhmyakov, V., Basin, M., & Reincke-Collon, C. (2014). Optimal LQ-type switched control design for a class of linear systems with piecewise constant inputs. Paper presented at the IFAC Proceedings Volumes (IFAC-PapersOnline), , 19 6976-6981. | spa |
dc.relation.references | Azhmyakov, V., & Fernandez-Gutierrez, J. P. (2016). St. pickl. A novel numerical ap-proach to the resilient MCLP based supply chain optimization. Proceed-Ings of the 12th IFAC Workshop on Intelligent Manufacturing Systems, , 145-150. | spa |
dc.relation.references | Azhmyakov, V., Martinez, J. C., & Poznyak, A. (2016). Optimal fixed-levels control for nonlinear systems with quadratic cost-functionals. Optimal Control Applications and Methods, 37(5), 1035-1055. doi:10.1002/oca.2223 | spa |
dc.relation.references | Azhmyakov, V., & Schmidt, W. (2006). Approximations of relaxed optimal control problems. Journal of Optimization Theory and Applications, 130(1), 61-77. doi:10.1007/s10957-006-9085-9 | spa |
dc.relation.references | Batanović, V., Petrović, D., & Petrović, R. (2009). Fuzzy logic based algorithms for maximum covering location problems. Information Sciences, 179(1-2), 120-129. doi:10.1016/j.ins.2008.08.019 | spa |
dc.relation.references | Berman, O., Kalcsics, J., Krass, D., & Nickel, S. (2009). The ordered gradual covering location problem on a network. Discrete Applied Mathematics, 157(18), 3689-3707. doi:10.1016/j.dam.2009.08.003 | spa |
dc.relation.references | Berman, O., & Wang, J. (2011). The minmax regret gradual covering location problem on a network with incomplete information of demand weights. European Journal of Operational Research, 208(3), 233-238. doi:10.1016/j.ejor.2010.08.016 | spa |
dc.relation.references | Bertsekas, D. P. (1995). Nonlinear Programming. | spa |
dc.relation.references | Canbolat, M. S., & Massow, M. v. (2009). Planar maximal covering with ellipses. Computers and Industrial Engineering, 57(1), 201-208. doi:10.1016/j.cie.2008.11.015 | spa |
dc.relation.references | Church, R., & ReVelle, C. (1974). The maximal covering location problem. Papers of the Regional Science Association, 32(1), 101-118. doi:10.1007/BF01942293 | spa |
dc.relation.references | Galvão, R. D., Espejo, L. G. A., & Boffey, B. (2000). A comparison of lagrangean and surrogate relaxations for the maximal covering location problem. European Journal of Operational Research, 124(2), 377-389. | spa |
dc.relation.references | Ji, G., & Han, S. (2014). A strategy analysis in dual-channel supply chain based on effort levels. Proceedings of the 1th International Conference on Service Systems and Service Management. | spa |
dc.relation.references | Kellerer, H., Pferschy, U., & Pisinger, D. (2004). Knapsack Problems. | spa |
dc.relation.references | Mitsos, A., Chachuat, B., & Barton, P. I. (2009). Mccormick-based relaxations of algorithms. SIAM Journal on Optimization, 20(2), 573-601. doi:10.1137/080717341 | spa |
dc.relation.references | Moore, G. C., & ReVelle, C. (1982). The hierarchical service location problem. Management Science, 28(7), 775-780. | spa |
dc.relation.references | Polak, E. (1997). Optimization. | spa |
dc.relation.references | ReVelle, C., Scholssberg, M., & Williams, J. (2008). Solving the maximal covering location problem with heuristic concentration. Computers and Operations Research, 35(2), 427-435. doi:10.1016/j.cor.2006.03.007 | spa |
dc.relation.references | Roubíček, T. (1997). Relaxation in Optimization Theory and Variational Calculus. | spa |
dc.relation.references | Shavandi, H., & Mahlooji, H. (2006). A fuzzy queuing location model with a genetic algorithm for congested systems. Applied Mathematics and Computation, 181(1), 440-456. doi:10.1016/j.amc.2005.12.058 | spa |
dc.relation.references | Sitek, P., & Wikarek, J. (2013). A hybrid approach to modeling and optimization for supply chain management with multimodal transport. Paper presented at the 2013 18th International Conference on Methods and Models in Automation and Robotics, MMAR 2013, 777-782. | spa |
dc.relation.references | Zarandi, M. H. F., Sisakht, A. H., & Davari, S. (2011). Design of a closed-loop supply chain (CLSC) model using an interactive fuzzy goal programming. International Journal of Advanced Manufacturing Technology, 56(5-8), 809-821. doi:10.1007/s00170-011-3212-y | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | spa |
dc.identifier.instname | instname:Universidad de Medellín | spa |