Mostrar el registro sencillo del ítem

dc.creatorAzhmyakov V.spa
dc.creatorJuarez R.spa
dc.date.accessioned2017-12-19T19:36:45Z
dc.date.available2017-12-19T19:36:45Z
dc.date.created2017
dc.identifier.issn1751570X
dc.identifier.urihttp://hdl.handle.net/11407/4287
dc.description.abstractThis paper studies optimal control processes governed by switched-mode systems. We consider Optimal Control Problems (OCPs) with smooth cost functionals and apply a newly elaborated abstraction for the system dynamics under consideration. The control design we finally obtain includes an optimal switching times selection ("timing") as well as an optimal modes sequence scheduling ("sequencing"). For purpose of numerical treatment of the initially given OCP we use a newly elaborated relaxation concept and analyse the resulting "weakly relaxed" optimization problems. In contrast to the conventional relaxations our approach is based on the infimal prox convolution technique and does not use the celebrated Chattering Lemma. This fact causes a lower relaxation gap. Our aim is to propose a gradient-based computational algorithms for the OCPs with switched-mode dynamics. In particular, we deal with the celebrated Armijo-type gradient methods and establish the corresponding convergence properties. The numerical consistency (numerical stability) analysis makes it possible to apply a class of relative simple first-order numerical procedures to a sophisticated initial OCP involved in specific switched-mode dynamics. © 2017 Elsevier Ltd.eng
dc.language.isoeng
dc.publisherElsevier Ltdspa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85015320829&doi=10.1016%2fj.nahs.2017.02.003&partnerID=40&md5=f027e2fe170cae3c41d47f6bbc969781spa
dc.sourceScopusspa
dc.titleA first-order numerical approach to switched-mode systems optimizationspa
dc.typeArticle in Presseng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.contributor.affiliationAzhmyakov, V., Universidad de Medellin, Department of Basic Sciences, Medellin, Colombiaspa
dc.contributor.affiliationJuarez, R., Universidad Autónoma de Coahuila, Department of Accounting, Torreon, Mexicospa
dc.identifier.doi10.1016/j.nahs.2017.02.003
dc.subject.keywordConsistent numerical approximationseng
dc.subject.keywordConvex relaxationseng
dc.subject.keywordEngineering applicationseng
dc.subject.keywordSwitched-mode control systemseng
dc.subject.keywordConvolutioneng
dc.subject.keywordGradient methodseng
dc.subject.keywordOptimal control systemseng
dc.subject.keywordOptimizationeng
dc.subject.keywordComputational algorithmeng
dc.subject.keywordConvergence propertieseng
dc.subject.keywordConvex relaxationeng
dc.subject.keywordConvolution techniqueseng
dc.subject.keywordEngineering applicationseng
dc.subject.keywordNumerical approximationseng
dc.subject.keywordOptimal control problemeng
dc.subject.keywordSwitched modeeng
dc.subject.keywordRelaxation processeseng
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.abstractThis paper studies optimal control processes governed by switched-mode systems. We consider Optimal Control Problems (OCPs) with smooth cost functionals and apply a newly elaborated abstraction for the system dynamics under consideration. The control design we finally obtain includes an optimal switching times selection ("timing") as well as an optimal modes sequence scheduling ("sequencing"). For purpose of numerical treatment of the initially given OCP we use a newly elaborated relaxation concept and analyse the resulting "weakly relaxed" optimization problems. In contrast to the conventional relaxations our approach is based on the infimal prox convolution technique and does not use the celebrated Chattering Lemma. This fact causes a lower relaxation gap. Our aim is to propose a gradient-based computational algorithms for the OCPs with switched-mode dynamics. In particular, we deal with the celebrated Armijo-type gradient methods and establish the corresponding convergence properties. The numerical consistency (numerical stability) analysis makes it possible to apply a class of relative simple first-order numerical procedures to a sophisticated initial OCP involved in specific switched-mode dynamics. © 2017 Elsevier Ltd.eng
dc.creator.affiliationUniversidad de Medellin, Department of Basic Sciences, Medellin, Colombiaspa
dc.creator.affiliationUniversidad Autónoma de Coahuila, Department of Accounting, Torreon, Mexicospa
dc.relation.ispartofesNonlinear Analysis: Hybrid Systemsspa
dc.relation.ispartofesNonlinear Analysis: Hybrid Systems Volume 25, 1 August 2017, Pages 126-137spa
dc.relation.referencesArmijo, L. (1966). Minimization of functions having lipschitz continuous first partial derivatives. Pacific Journal of Mathematics, 16(1), 1-3.spa
dc.relation.referencesAzhmyakov, V., Basin, M., & Reincke-Collon, C. (2014). Optimal LQ-type switched control design for a class of linear systems with piecewise constant inputs. Paper presented at the IFAC Proceedings Volumes (IFAC-PapersOnline), 19 6976-6981.spa
dc.relation.referencesAzhmyakov, V., Basin, M. V., & Raisch, J. (2012). A proximal point based approach to optimal control of affine switched systems. Discrete Event Dynamic Systems: Theory and Applications, 22(1), 61-81. doi:10.1007/s10626-011-0109-8spa
dc.relation.referencesAzhmyakov, V., Boltyanski, V. G., & Poznyak, A. (2008). Optimal control of impulsive hybrid systems. Nonlinear Analysis: Hybrid Systems, 2(4), 1089-1097. doi:10.1016/j.nahs.2008.09.003spa
dc.relation.referencesAzhmyakov, V., & Juarez, R. (2015). On the projected gradient methods for switched - mode systems optimization. IFAC-PapersOnLine, 48(27), 181-186. doi:10.1016/j.ifacol.2015.11.172spa
dc.relation.referencesAzhmyakov, V., & Schmidt, W. (2006). Approximations of relaxed optimal control problems. Journal of Optimization Theory and Applications, 130(1), 61-77. doi:10.1007/s10957-006-9085-9spa
dc.relation.referencesBasin, M., Calderon-Alvarez, D., & Ferrara, A. (2008). Sliding mode regulator as solution to optimal control problem. Paper presented at the Proceedings of the IEEE Conference on Decision and Control, 2184-2189. doi:10.1109/CDC.2008.4739114spa
dc.relation.referencesBello Cruz, J. Y., & De Oliveira, C. W. (2014). On Weak and Strong Convergence of the Projected Gradient Method for Convex Optimization in Hilbert Spaces, 1-18.spa
dc.relation.referencesBengea, S. C., & DeCarlo, R. A. (2005). Optimal control of switching systems. Automatica, 41(1), 11-27. doi:10.1016/j.automatica.2004.08.003spa
dc.relation.referencesBerkovitz, L. D. (1974). Optimal Control Theory.spa
dc.relation.referencesBertsekas, D. P. (1995). Nonlinear Programming.spa
dc.relation.referencesBetts, J. T. (2001). Practical Methods for Optimal Control using Nonlinear Programming.spa
dc.relation.referencesBoltyanski, V., & Poznyak, A. (2012). The robust maximum principle. The Robust Maximum Principle.spa
dc.relation.referencesBrockett, R. W., & Liberzon, D. (2000). Quantized feedback stabilization of linear systems. IEEE Transactions on Automatic Control, 45(7), 1279-1289. doi:10.1109/9.867021spa
dc.relation.referencesClarke, F. H., Ledyaev, Y. S., Stern, R. J., & Wolenski, P. R. (1998). Nonsmooth analysis and control theory. Graduate Texts in Mathematics, 178.spa
dc.relation.referencesDing, X; Wardi, Y., & Egerstedt, M. (2009). On-line optimization of switched-mode dynamical systems. IEEE Transactions on Automatic Control, 54(9), 2266-2271. doi:10.1109/TAC.2009.2026864spa
dc.relation.referencesEgerstedt, M., & Martin, C. (2009). Control theoretic splines: Optimal control, statistics, and path planning. Control theoretic splines: Optimal control, statistics, and path planning (pp. 1-217).spa
dc.relation.referencesEgerstedt, M., Wardi, Y., & Axelsson, H. (2006). Transition-time optimization for switched-mode dynamical systems. IEEE Transactions on Automatic Control, 51(1), 110-115. doi:10.1109/TAC.2005.861711spa
dc.relation.referencesGoldstein, A. A. (1964). Convex programming in hilbert space. Bulletin of the American Mathematical Society, 70(5), 709-710. doi:10.1090/S0002-9904-1964-11178-2spa
dc.relation.referencesGoodwin, G. C., Seron, M. M., & De Doná, J. A. (2005). Constrained Control & Estimation - an Optimization Perspective.spa
dc.relation.referencesIoffe, A. D., & Tihomirov, V. M. (1979). Theory of Extremal Problems.spa
dc.relation.referencesKojima, A., & Morari, M. (2004). LQ control for constrained continuous-time systems. Automatica, 40(7), 1143-1155. doi:10.1016/j.automatica.2004.02.007spa
dc.relation.referencesLygeros, J. (2004). Lecture Notes on Hybrid Systems.spa
dc.relation.referencesMitsos, A., Chachuat, B., & Barton, P. I. (2009). Mccormick-based relaxations of algorithms. SIAM Journal on Optimization, 20(2), 573-601. doi:10.1137/080717341spa
dc.relation.referencesPolak, E. (1997). Optimizationspa
dc.relation.referencesPoznyak, A., Polyakov, A., & Azhmyakov, V. (2014). Attractive ellipsoids in robust control. Attractive Ellipsoids in Robust Control.spa
dc.relation.referencesPoznyak, A. S. (2009). Advanced mathematical tools for automatic control engineers: Volume 2. Advanced mathematical tools for automatic control engineers: Volume 2. doi:10.1016/C2009-0-06218-7spa
dc.relation.referencesRantzer, A., & Johansson, M. (2000). Piecewise linear quadratic optimal control. IEEE Transactions on Automatic Control, 45(4), 629-637. doi:10.1109/9.847100spa
dc.relation.referencesRockafellar, R. T., & Wets, R. J. -. (1998). Variational analysis. Grundlehren Math.Wiss., 317.spa
dc.relation.referencesScott, J. K., & Barton, P. I. (2011). Convex relaxations for nonconvex optimal control problems. Paper presented at the Proceedings of the IEEE Conference on Decision and Control, 1042-1047. doi:10.1109/CDC.2011.6160284spa
dc.relation.referencesShaikh, M. S., & Caines, P. E. (2007). On the hybrid optimal control problem: Theory and algorithms. IEEE Transactions on Automatic Control, 52(9), 1587-1603. doi:10.1109/TAC.2007.904451spa
dc.relation.referencesStanton, S. A., & Marchand, B. G. (2010). Finite set control transcription for optimal control applications. Journal of Spacecraft and Rockets, 47(3), 457-471. doi:10.2514/1.44056spa
dc.relation.referencesTaringoo, F., & Caines, P. (2009). The sensitivity of hybrid systems optimal cost. Lecture Notes in Computer Science, Vol.5469.spa
dc.relation.referencesTeo, K. L., Goh, C. J., & Wong, K. H. (1991). A Unified Computational Approach to Optimal Control Problems.spa
dc.relation.referencesVasudevan, R., Gonzalez, H., Bajcsy, R., & Sastry, S. S. (2013). Consistent approximations for the optimal control of constrained switched systems-part 1: A conceptual algorithm. SIAM Journal on Control and Optimization, 51(6), 4463-4483. doi:10.1137/120901490spa
dc.relation.referencesVasudevan, R., Gonzalez, H., Bajcsy, R., & Sastry, S. S. (2013). Consistent approximations for the optimal control of constrained switched systems-part 2: An implementable algorithm. SIAM Journal on Control and Optimization, 51(6), 4484-4503. doi:10.1137/120901507spa
dc.relation.referencesVu, L., & Liberzon, D. (2012). Supervisory control of uncertain systems with quantized information. International Journal of Adaptive Control and Signal Processing, 26(8), 739-756. doi:10.1002/acs.2280spa
dc.relation.referencesWardi, Y. (2012). Optimal control of switched-mode dynamical systems. Paper presented at the IFAC Proceedings Volumes (IFAC-PapersOnline), 4-8.spa
dc.relation.referencesWardi, Y., & Egerstedt, M. (0000). Algorithm for Optimal Mode Scheduling in Switched Systemsspa
dc.relation.referencesWardi, Y., Egerstedt, M., & Hale, M. (2015). Switched-mode systems: Gradient-descent algorithms with armijo step sizes. Discrete Event Dynamic Systems: Theory and Applications, 25(4), 571-599. doi:10.1007/s10626-014-0198-2spa
dc.relation.referencesWardi, Y., Egerstedt, M., & Twu, P. (2012). A controlled-precision algorithm for mode-switching optimization. Paper presented at the Proceedings of the IEEE Conference on Decision and Control, 713-718. doi:10.1109/CDC.2012.6426621spa
dc.relation.referencesXu, X., & Antsaklis, P. J. (2003). Optimal control of hybrid autonomous systems with state jumps. Paper presented at the Proceedings of the American Control Conference, 6 5191-5196.spa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/other
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem