Mostrar el registro sencillo del ítem

dc.creatorLondoño-Menjura R.F.spa
dc.creatorOspina R.spa
dc.creatorEscobar D.spa
dc.creatorQuintero J.H.spa
dc.creatorOlaya J.J.spa
dc.creatorMello A.spa
dc.creatorRestrepo-Parra E.spa
dc.date.accessioned2017-12-19T19:36:45Z
dc.date.available2017-12-19T19:36:45Z
dc.date.created2018
dc.identifier.issn1694332
dc.identifier.urihttp://hdl.handle.net/11407/4288
dc.description.abstractWTiN films were grown on silicon and stainless-steel substrates using the DC magnetron sputtering technique. The substrate temperature was varied taking values of 100 °C, 200 °C, 300 °C, and 400 °C. X-ray diffraction analysis allowed us to identify a rock salt-type face centered cubic (FCC) structure, with a lattice parameter of approximately 4.2 nm, a relatively low microstrain (deformations at microscopy level, between 4.7% and 6.7%), and a crystallite size of a few nanometers (11.6 nm–31.5 nm). The C1s, N1s, O1s, Ti2p, W4s, W4p, W4d and W4f narrow spectra were obtained using X-ray photoelectron spectroscopy (XPS) and depending on the substrate temperature, the deconvoluted spectra presented different binding energies. Grain sizes and roughness (approximately 4 nm) of films were determined using atomic force microscopy. Scratch and pin on disc tests were conducted, showing better performance of the film grown at 200 °C. This sample exhibited a lower roughness, coefficient of friction, and wear rate. © 2017eng
dc.language.isoeng
dc.publisherElsevier B.V.spa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85029529085&doi=10.1016%2fj.apsusc.2017.07.215&partnerID=40&md5=f329d53d8d587b6d915b00b99efc68a1spa
dc.sourceScopusspa
dc.titleInfluence of deposition temperature on WTiN coatings tribological performancespa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.contributor.affiliationLondoño-Menjura, R.F., Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al Magdalena, Manizales, Colombiaspa
dc.contributor.affiliationOspina, R., Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al Magdalena, Manizales, Colombia, Universidad Industrial de Santander, Santander, Bucaramanga, Colombia, Centro Brasilero de Pesquizas Fisica – CBPF, Rio de Janeiro, Brazilspa
dc.contributor.affiliationEscobar, D., Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al Magdalena, Manizales, Colombia, PCM computacional Applications, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al Magdalena, Manizales, Colombia, Grupo de Magnetismo y Simulación, Instituto de Física. Universidad de Antioquia, Medellín, Colombiaspa
dc.contributor.affiliationQuintero, J.H., Materiales Nanoestructurados y Biomodelación, Universidad de Medellín, Medellín, Colombiaspa
dc.contributor.affiliationOlaya, J.J., Grupo de investigación AFIS, Universidad Nacional de Colombia, Bogotá, Colombiaspa
dc.contributor.affiliationMello, A., Centro Brasilero de Pesquizas Fisica – CBPF, Rio de Janeiro, Brazilspa
dc.contributor.affiliationRestrepo-Parra, E., Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al Magdalena, Manizales, Colombia, PCM computacional Applications, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al Magdalena, Manizales, Colombiaspa
dc.identifier.doi10.1016/j.apsusc.2017.07.215
dc.subject.keywordAFMeng
dc.subject.keywordChemical compositioneng
dc.subject.keywordCoefficient of frictioneng
dc.subject.keywordMicrostructureeng
dc.subject.keywordRoughnesseng
dc.subject.keywordTernary coatingseng
dc.subject.keywordWeareng
dc.publisher.facultyFacultad de Ingenieríasspa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.abstractWTiN films were grown on silicon and stainless-steel substrates using the DC magnetron sputtering technique. The substrate temperature was varied taking values of 100 °C, 200 °C, 300 °C, and 400 °C. X-ray diffraction analysis allowed us to identify a rock salt-type face centered cubic (FCC) structure, with a lattice parameter of approximately 4.2 nm, a relatively low microstrain (deformations at microscopy level, between 4.7% and 6.7%), and a crystallite size of a few nanometers (11.6 nm–31.5 nm). The C1s, N1s, O1s, Ti2p, W4s, W4p, W4d and W4f narrow spectra were obtained using X-ray photoelectron spectroscopy (XPS) and depending on the substrate temperature, the deconvoluted spectra presented different binding energies. Grain sizes and roughness (approximately 4 nm) of films were determined using atomic force microscopy. Scratch and pin on disc tests were conducted, showing better performance of the film grown at 200 °C. This sample exhibited a lower roughness, coefficient of friction, and wear rate. © 2017eng
dc.creator.affiliationLaboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al Magdalena, Manizales, Colombiaspa
dc.creator.affiliationUniversidad Industrial de Santander, Santander, Bucaramanga, Colombiaspa
dc.creator.affiliationCentro Brasilero de Pesquizas Fisica – CBPF, Rio de Janeiro, Brazilspa
dc.creator.affiliationPCM computacional Applications, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al Magdalena, Manizales, Colombiaspa
dc.creator.affiliationGrupo de Magnetismo y Simulación, Instituto de Física. Universidad de Antioquia, Medellín, Colombiaspa
dc.creator.affiliationMateriales Nanoestructurados y Biomodelación, Universidad de Medellín, Medellín, Colombiaspa
dc.creator.affiliationGrupo de investigación AFIS, Universidad Nacional de Colombia, Bogotá, Colombiaspa
dc.relation.ispartofesApplied Surface Sciencespa
dc.relation.referencesAbadias, G., Djemia, P., & Belliard, L. (2014). Alloying effects on the structure and elastic properties of hard coatings based on ternary transition metal (M=Ti, zr or ta) nitrides. Surface and Coatings Technology, 257, 129-137. doi:10.1016/j.surfcoat.2014.08.022spa
dc.relation.referencesAgudelo-Morimitsu, L. C., De La Roche, J., Escobar, D., Ospina, R., & Restrepo-Parra, E. (2013). Substrate heating and post-annealing effect on tungsten/tungsten carbide bilayers grown by non-reactive DC magnetron sputtering. Ceramics International, 39(7), 7355-7365. doi:10.1016/j.ceramint.2013.02.075spa
dc.relation.referencesAlegría-Ortega, J. A., Ocampo-Carmona, L. M., Suárez-Bustamante, F. A., & Olaya-Flórez, J. J. (2012). Erosion-corrosion wear of Cr/CrN multi-layer coating deposited on AISI-304 stainless steel using the unbalanced magnetron (UBM) sputtering system. Wear, 290-291, 149-153. doi:10.1016/j.wear.2012.04.007spa
dc.relation.referencesAli, M., Hamzah, E., & Toff, M. R. (2008). Friction coefficient and surface roughness of TiN-coated HSS deposited using cathodic arc evaporation PVD technique. Industrial Lubrication and Tribology, 60(3), 121-130. doi:10.1108/00368790810871048spa
dc.relation.referencesAlves, V. A., Brett, C. M. A., & Cavaleiro, A. (2002). Electrochemical corrosion of magnetron sputtered WTiN-coated mild steels in a chloride medium. Surface and Coatings Technology, 161(2-3), 257-266. doi:10.1016/S0257-8972(02)00515-7spa
dc.relation.referencesASTM. (2012). G99 Standard Test Method for Wear Testing with a Pin on Disk Apparatus, 5, 1-5.spa
dc.relation.referencesBinder, C., Bendo, T., Hammes, G., Klein, A. N., & de Mello, J. D. B. (2015). Effect of nature of nitride phases on sliding wear of plasma nitrided sintered iron. Wear, 332-333, 995-1005. doi:10.1016/j.wear.2015.01.083spa
dc.relation.referencesBrett, C. M. A., & Cavaleiro, A. (1998). A comparison of the electrochemical behaviour of W-M-N (M = ni, ti, al) thin film coatings on high speed steel. Thin Solid Films, 322(1-2), 263-273.spa
dc.relation.referencesBull, S. J. (1997). Failure mode maps in the thin film scratch adhesion test. Tribology International, 30(7), 491-498. doi:10.1016/S0301-679X(97)00012-1spa
dc.relation.referencesCastanho, J. M., & Vieira, M. T. (1998). The influence of the interstitial element on tribological behaviour of tungsten coatings. Surface and Coatings Technology, 102(1-2), 50-62.spa
dc.relation.referencesCastillo, H., Restrepo, E., & Arango, P. (2011). Appl.Surf.Sci., 257, 2664-2668.spa
dc.relation.referencesCavaleiro, A., Louro, C., & Montemor, F. (2000). Oxidation of sputtered W-based coatings. Surface and Coatings Technology, 131(1-3), 441-447. doi:10.1016/S0257-8972(00)00784-2spa
dc.relation.referencesCavaleiro, A., Trindade, B., & Vieira, M. T. (2003). Influence of ti addition on the properties of W-ti-C/N sputtered films. Surface and Coatings Technology, 174-175, 68-75. doi:10.1016/S0257-8972(03)00328-1spa
dc.relation.referencesChavda, M. R., Dave, D. P., Chauhan, K. V., & Rawal, S. K. (2016). Tribological characterization of TiN coating prepared by sputtering. Proced.Technol., 23, 36-41.spa
dc.relation.referencesDejun, K., & Haoyuan, G. (2015). Friction-wear behaviors of cathodic arc ion plating AlTiN coatings at high temperatures. Tribology International, 88, 31-39. doi:10.1016/j.triboint.2015.03.009spa
dc.relation.referencesDi Puccio, F., & Mattei, L. (2015). A novel approach to the estimation and application of the wear coefficient of metal-on-metal hip implants. Tribology International, 83, 69-76. doi:10.1016/j.triboint.2014.10.023spa
dc.relation.referencesDirks, A. G., Wolters, R. A. M., & Nellissen, A. J. M. (1990). On the microstructure-property relationship of W{single bond}ti{single bond}(N) diffusion barriers. Thin Solid Films, 193-194(PART 1), 201-210. doi:10.1016/S0040-6090(05)80028-8spa
dc.relation.referencesDong, S., Chen, X., Zhang, X., & Cui, G. (2013). Nanostructured transition metal nitrides for energy storage and fuel cells. Coordination Chemistry Reviews, 257(13-14), 1946-1956. doi:10.1016/j.ccr.2012.12.012spa
dc.relation.referencesDu, Q., Wang, W., Li, S., Zhang, D., & Zheng, W. (2016). Effects of substrate temperature on the structural, optical and resistive switching properties of HfO2 films. Thin Solid Films, 608, 21-25. doi:10.1016/j.tsf.2016.04.016spa
dc.relation.referencesEdström, D., Sangiovanni, D. G., Hultman, L., & Chirita, V. (2014). Effects of atomic ordering on the elastic properties of TiN- and VN-based ternary alloys. Thin Solid Films, 571(P1), 145-153. doi:10.1016/j.tsf.2014.09.048spa
dc.relation.referencesEscobar, D., Ospina, R., Gómez, A. G., & Restrepo-Parra, E. (2015). Microstructure, residual stress and hardness study of nanocrystalline titanium-zirconium nitride thin films. Ceramics International, 41(1), 947-952. doi:10.1016/j.ceramint.2014.09.012spa
dc.relation.referencesEscobar, D., Ospina, R., Gómez, A. G., Restrepo-Parra, E., & Arango, P. J. (2014). X-ray microstructural analysis of nanocrystalline TiZrN thin films by diffraction pattern modeling. Materials Characterization, 88, 119-126. doi:10.1016/j.matchar.2013.10.028spa
dc.relation.referencesFederici, M., Menapace, C., Moscatelli, A., Gialanella, S., & Straffelini, G. (2016). Effect of roughness on the wear behavior of HVOF coatings dry sliding against a friction material. Wear, 368-369, 326-334. doi:10.1016/j.wear.2016.10.013spa
dc.relation.referencesFugger, M., Plappert, M., Schäffer, C., Humbel, O., Hutter, H., Danninger, H., & Nowottnick, M. (2014). Comparison of WTi and WTi(N) as diffusion barriers for al and cu metallization on si with respect to thermal stability and diffusion behavior of ti. Microelectronics Reliability, 54(11), 2487-2493. doi:10.1016/j.microrel.2014.04.016spa
dc.relation.referencesGashaw, F., & Ampong, F. (2016). Chem.Phys., 183, 320-325.spa
dc.relation.referencesGotman, I., Gutmanas, E. Y., & Hunter, G. (2011). Wear-resistant ceramic films and coatings. Comprehensive biomaterials (pp. 127-155).spa
dc.relation.referencesGreczynski, G., Mráz, S., Hultman, L., & Schneider, J. M. (2016). Unintentional carbide formation evidenced during high-vacuum magnetron sputtering of transition metal nitride thin films. Applied Surface Science, 385, 356-359. doi:10.1016/j.apsusc.2016.05.129spa
dc.relation.referencesGuo, H., Chen, W., Shan, Y., Wang, W., Zhang, Z., & Jia, J. (2015). Microstructures and properties of titanium nitride films prepared by pulsed laser deposition at different substrate temperatures. Applied Surface Science, 357, 473-478. doi:10.1016/j.apsusc.2015.09.061spa
dc.relation.referencesHuang, R., Qi, Z., Sun, P., Wang, Z., & Wu, C. (2011). Phys.Procedia, 18, 067-160.spa
dc.relation.referencesJagielski, J., Khanna, A. S., Kucinski, J., Mishra, D. S., Racolta, P., Sioshansi, P., . . . Zalar, A. (2000). Effect of chromium nitride coating on the corrosion and wear resistance of stainless steel. Applied Surface Science, 156(1), 47-64. doi:10.1016/S0169-4332(99)00350-5spa
dc.relation.referencesJiménez, H., Restrepo, E., & Devia, A. (2006). Effect of the substrate temperature in ZrN coatings grown by the pulsed arc technique studied by XRD. Surface and Coatings Technology, 201(3-4), 1594-1601. doi:10.1016/j.surfcoat.2006.02.030spa
dc.relation.referencesKindlund, H., Sangiovanni, D. G., Lu, J., Jensen, J., Chirita, V., Birch, J., . . . Hultman, L. (2014). Vacancy-induced toughening in hard single-crystal V0.5Mo 0.5Nx/MgO(0 0 1) thin films. Acta Materialia, 77, 394-400. doi:10.1016/j.actamat.2014.06.025spa
dc.relation.referencesKindlund, H., Sangiovanni, D. G., Martínez-De-Olcoz, L., Lu, J., Jensen, J., Birch, J., . . . Hultman, L. (2013). Toughness enhancement in hard ceramic thin films by alloy design. APL Materials, 1(4) doi:10.1063/1.4822440spa
dc.relation.referencesKuchuk, A., Kladko, V., Lytvyn, O., Piotrowska, A., Minikayev, R., & Ratajczak, R. (2006). Adv.Eng.Mater., 3(8).spa
dc.relation.referencesLaugier, M. (1981). The development of the scratch test technique for the determination of the adhesion of coatings. Thin Solid Films, 76(3), 289-294. doi:10.1016/0040-6090(81)90700-8spa
dc.relation.referencesLiu, G., Yang, Y., Huang, B., Luo, X., Ouyang, S., Zhao, G., . . . Li, P. (2016). Effects of substrate temperature on the structure, residual stress and nanohardness of Ti6Al4V films prepared by magnetron sputtering. Applied Surface Science, 370, 53-58. doi:10.1016/j.apsusc.2016.02.021spa
dc.relation.referencesMa, C. -., Huang, J. -., & Chen, H. (2006). Nanohardness of nanocrystalline TiN thin films. Surface and Coatings Technology, 200(12-13), 3868-3875. doi:10.1016/j.surfcoat.2004.10.098spa
dc.relation.referencesMagalhaes, F. (2011). Introducción a la tecnica de espectroscopia de fotoelectrones de rayos X (XPS).spa
dc.relation.referencesMatějíček, J., Vilémová, M., Mušálek, R., Sachr, P., & Horník, J. (2013). The influence of interface characteristics on the adhesion/cohesion of plasma sprayed tungsten coatings. Coatings, 3(2), 108-125.spa
dc.relation.referencesMitrovic, S., Adamovic, D., Zivic, F., Dzunic, D., & Pantic, M. (2014). Friction and wear behavior of shot peened surfaces of 36CrNiMo4 and 36NiCrMo16 alloyed steels under dry and lubricated contact conditions. Applied Surface Science, 290, 223-232. doi:10.1016/j.apsusc.2013.11.050spa
dc.relation.referencesMohamed, J., Sanjeeviraja, C., & Amalraj, L. (2016). Influence of substrate temperature on physical properties of (111) oriented CdIn2S4 thin films by nebulized spray pyrolysis technique. Journal of Asian Ceramic Societies, 4(2), 191-200. doi:10.1016/j.jascer.2016.03.002spa
dc.relation.referencesNtwaeaborwa, O. M., Nsimama, P. D., Abiade, J. T., Coetsee, E., & Swart, H. C. (2009). The effects of substrate temperature on the structure, morphology and photoluminescence properties of pulsed laser deposited SrAl2O4:Eu2+,Dy3+ thin films. Physica B: Condensed Matter, 404(22), 4436-4439. doi:10.1016/j.physb.2009.09.016spa
dc.relation.referencesNyenge, R. L., Swart, H. C., & Ntwaeaborwa, O. M. (2016). The influence of substrate temperature and deposition pressure on pulsed laser deposited thin films of CaS:Eu2+ phosphors. Physica B: Condensed Matter, 480, 186-190. doi:10.1016/j.physb.2015.08.046spa
dc.relation.referencesOktay, S., Kahraman, Z., Urgen, M., & Kazmanli, K. (2015). XPS investigations of tribolayers formed on TiN and (ti,re)N coatings. Applied Surface Science, 328, 255-261. doi:10.1016/j.apsusc.2014.12.023spa
dc.relation.referencesPolcar, T., Parreira, N. M. G., & Cavaleiro, A. (2007). Tribological characterization of tungsten nitride coatings deposited by reactive magnetron sputtering. Wear, 262(5-6), 655-665. doi:10.1016/j.wear.2006.07.010spa
dc.relation.referencesQingxiang, W., Shuhua, L., Xianhui, W., & Zhikang, F. (2010). Diffusion barrier performance of amorphous WTiN films in cu metallization. Vacuum, 84(11), 1270-1274. doi:10.1016/j.vacuum.2010.02.002spa
dc.relation.referencesRamarotafika, H., & Lemperiere, G. (1995). Influence of a d.c. substrate bias on the resistivity, composition, crystallite size and microstrain of WTi and WTi-N films. Thin Solid Films, 266(2), 267-273. doi:10.1016/0040-6090(96)80032-0spa
dc.relation.referencesSangiovanni, D. G., Chirita, V., & Hultman, L. (2010). Electronic mechanism for toughness enhancement in TixM 1-xN M=Mo and W). Physical Review B - Condensed Matter and Materials Physics, 81(10) doi:10.1103/PhysRevB.81.104107spa
dc.relation.referencesSangiovanni, D. G., Edströma, D., Hultmana, L., Petrov, I., Greene, J. E., & Chirita, V. (2014). Ti adatom diffusion on TiN(001): Ab initio and classical molecular dynamics simulations. Surface Science, 627, 34-41. doi:10.1016/j.susc.2014.04.007spa
dc.relation.referencesSangiovanni, D. G., Hultman, L., & Chirita, V. (2011). Supertoughening in B1 transition metal nitride alloys by increased valence electron concentration. Acta Materialia, 59(5), 2121-2134. doi:10.1016/j.actamat.2010.12.013spa
dc.relation.referencesSangiovanni, D. G., Hultman, L., Chirita, V., Petrov, I., & Greene, J. E. (2016). Effects of phase stability, lattice ordering, and electron density on plastic deformation in cubic TiWN pseudobinary transition-metal nitride alloys. Acta Materialia, 103, 823-835. doi:10.1016/j.actamat.2015.10.039spa
dc.relation.referencesShaginyan, L. R., Mišina, M., Zemek, J., Musil, J., Regent, F., & Britun, V. F. (2002). Composition, structure, microhardness and residual stress of W-ti-N films deposited by reactive magnetron sputtering. Thin Solid Films, 408(1-2), 136-147. doi:10.1016/S0040-6090(02)00091-3spa
dc.relation.referencesSuresh Kuiry, P. (2012). Advanced scratch testing for evaluation of coatings.spa
dc.relation.referencesSvahn, F., Kassman-Rudolphi, Å., & Wallén, E. (2003). The influence of surface roughness on friction and wear of machine element coatings. Wear, 254(11), 1092-1098. doi:10.1016/S0043-1648(03)00341-7spa
dc.relation.referencesVives, S., Gaffet, E., & Meunier, C. (2004). X-ray diffraction line profile analysis of iron ball milled powders. Materials Science and Engineering A, 366(2), 229-238. doi:10.1016/S0921-5093(03)00572-0spa
dc.relation.referencesWagner, C., Riggs, W., Davis, L., Moulder, G., & Muilenberg, G. (1979). Handbook of X-ray spectroscopy.spa
dc.relation.referencesWong, W., McMurdie, H., & Paretzkin, B. (1987).spa
dc.relation.referencesZhou, S., Liu, W., Liu, H., & Cai, C. (2011). Structural and electrical properties of ti-W-N thin films deposited by reactive RF sputtering. Paper presented at the Physics Procedia, 18 66-72. doi:10.1016/j.phpro.2011.06.059spa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem