Mostrar el registro sencillo del ítem

dc.creatorPérez Sánchez E.Ospa
dc.creatorToro Jaramillo I.Dspa
dc.creatorHernandez Sánchez B.Y.spa
dc.date.accessioned2017-12-19T19:36:45Z
dc.date.available2017-12-19T19:36:45Z
dc.date.created2017
dc.identifier.issn7981015
dc.identifier.urihttp://hdl.handle.net/11407/4289
dc.description.abstractThe article aims to evaluate the level of development of absorption capacity (RACAP) in Colombian SMEs. It is part of a sample of 363 Colombian SMEs (Dane, 2012), a literature review with the support of the content analysis and a linear regression model is used, which allow to show the existence of a positive linear correlation between the acquisition and the assimilation of external knowledge in the organizations under study. © 2017. revistaESPACIOS.com.eng
dc.language.isospa
dc.publisherRevista Espaciosspa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85020234094&partnerID=40&md5=22b485ba3dc7e4a2f49c2752b88bd930spa
dc.sourceScopusspa
dc.titleMeasurement of potential absorption capacity in Colombia's innovative companies [Medición de la capacidad de absorción potencial en las empresas innovadoras de Colombia]spa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.contributor.affiliationPérez Sánchez, E.Ospa
dc.contributor.affiliationFacultad de Ciencias económicas y Administrativas, Universidad de Medellín, Medellín, Colombiaspa
dc.contributor.affiliationToro Jaramillo, I.Dspa
dc.contributor.affiliationFacultad de Teología, Universidad Pontificia Bolivariana, Medellín, Colombiaspa
dc.contributor.affiliationHernandez Sánchez, B.Yspa
dc.contributor.affiliationFacultad de Ciencias económicas y Administrativas, Universidad de Medellín, Medellín, Colombiaspa
dc.subject.keywordAbsorption capacitieseng
dc.subject.keywordMeasurement of absorption capacitieseng
dc.subject.keywordPotential absorption capacitieseng
dc.publisher.facultyFacultad de Ciencias Económicas y Administrativasspa
dc.abstractThe article aims to evaluate the level of development of absorption capacity (RACAP) in Colombian SMEs. It is part of a sample of 363 Colombian SMEs (Dane, 2012), a literature review with the support of the content analysis and a linear regression model is used, which allow to show the existence of a positive linear correlation between the acquisition and the assimilation of external knowledge in the organizations under study. © 2017. revistaESPACIOS.com.eng
dc.creator.affiliationFacultad de Ciencias económicas y Administrativas, Universidad de Medellín, Medellín, Colombiaspa
dc.creator.affiliationFacultad de Teología, Universidad Pontificia Bolivariana, Medellín, Colombiaspa
dc.relation.ispartofesEspaciosspa
dc.relation.referencesHariharan, P. C., & Pople, J. A. (1973). The influence of polarization functions on molecular orbital hydrogenation energies. Theoretica Chimica Acta, 28(3), 213-222. doi:10.1007/BF00533485spa
dc.relation.referencesHay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. potentials for K to au including the outermost core orbitale. The Journal of Chemical Physics, 82(1), 299-310.spa
dc.relation.referencesHay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. potentials for the transition metal atoms sc to hg. The Journal of Chemical Physics, 82(1), 270-283.spa
dc.relation.referencesHehre, W. J., Ditchfield, K., & Pople, J. A. (1972). Self-consistent molecular orbital methods. XII. further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. The Journal of Chemical Physics, 56(5), 2257-2261.spa
dc.relation.referencesJean-Louis Hérisson, P., & Chauvin, Y. (1970). Die Makromol.Chem., 141, 161-176.spa
dc.relation.referencesJia, H. -., Gouré, E., Solans-Monfort, X., Llop Castelbou, J., Chow, C., Taoufik, M., . . . Quadrelli, E. A. (2015). Hydrazine N-N bond cleavage over silica-supported tantalum-hydrides. Inorganic Chemistry, 54(24), 11648-11659. doi:10.1021/acs.inorgchem.5b01541spa
dc.relation.referencesKresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1), 15-50. doi:10.1016/0927-0256(96)00008-0spa
dc.relation.referencesKresse, G., & Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B - Condensed Matter and Materials Physics, 54(16), 11169-11186.spa
dc.relation.referencesKresse, G., & Hafner, J. (1993). Ab initio molecular dynamics for liquid metals. Physical Review B, 47(1), 558-561. doi:10.1103/PhysRevB.47.558spa
dc.relation.referencesKresse, G., & Hafner, J. (1994). Ab initio molecular-dynamics simulation of the liquid-metalamorphous- semiconductor transition in germanium. Physical Review B, 49(20), 14251-14269. doi:10.1103/PhysRevB.49.14251spa
dc.relation.referencesKrishnan, R., Binkley, J. S., Seeger, R., & Pople, J. A. (1980). Self-consistent molecular orbital |methods. XX. A basis set for correlated wave functions. The Journal of Chemical Physics, 72(1), 650-654.spa
dc.relation.referencesLe Roux, E., Chabanas, M., Baudouin, A., De Mallmann, A., Copéret, C., Quadrelli, E. A., . . . Sunley, G. J. (2004). Detailed structural investigation of the grafting of [ta(=CHtBu)(CH 2tBu)3] and [Cp*TaMe4] on silica partially dehydroxylated at 700 °C and the activity of the grafted complexes toward alkane metathesis. Journal of the American Chemical Society, 126(41), 13391-13399. doi:10.1021/ja046486rspa
dc.relation.referencesLe Roux, E., Taoufik, M., Baudouin, A., Copéret, C., Thivolle-Cazat, J., Basset, J. -., . . . Sunley, G. J. (2007). Silica-alumina-supported, tungsten-based heterogeneous alkane metathesis catalyst: Is it closer to a silica- or an alumina-supported system? Advanced Synthesis and Catalysis, 349(1-2), 231-237. doi:10.1002/adsc.200600436spa
dc.relation.referencesLe Roux, E., Taoufik, M., Copéret, C., De Mallmann, A., Thivolle-Cazat, J., Basset, J. -., . . . Sunley, G. J. (2005). Development of tungsten-based heterogeneous alkane metathesis catalysts through a structure-activity relationship. Angewandte Chemie - International Edition, 44(41), 6755-6758. doi:10.1002/anie.200501382spa
dc.relation.referencesLeduc, A. -., Salameh, A., Soulivong, D., Chabanas, M., Basset, J. -., Copéret, C., . . . Röper, M. (2008). β-H transfer from the metallacyclobutane: A key step in the deactivation and byproduct formation for the well-defined silica-supported rhenium alkylidene alkene metathesis catalyst. Journal of the American Chemical Society, 130(19), 6288-6297. doi:10.1021/ja800189aspa
dc.relation.referencesLin, Z. (2007). Current understanding of the σ-bond metathesis reactions of LnMR + R′-H → LnMR′ + R-H. Coordination Chemistry Reviews, 251(17-20), 2280-2291. doi:10.1016/j.ccr.2006.11.006spa
dc.relation.referencesMaury, O., Lefort, L., Vidal, V., Thivolle-Cazat, J., & Basset, J. -. (1999). Metathesis of alkanes: Evidence for degenerate metathesis of ethane over a silica-supported tantalum hydride prepared by surface organometallic chemistry. Angewandte Chemie - International Edition, 38(13-14), 1952-1955.spa
dc.relation.referencesMaury, O., Lefort, L., Vidal, V., Thivolle-Cazat, J., & Basset, J. -. (2010). Revisiting the metathesis of 13C-monolabeled ethane. Organometallics, 29(23), 6612-6614. doi:10.1021/om100542kspa
dc.relation.referencesMazar, M. N., Al-Hashimi, S., Bhan, A., & Cococcioni, M. (2011). Alkane metathesis by tantalum metal hydride on ferrierite: A computational study. Journal of Physical Chemistry C, 115(20), 10087-10096. doi:10.1021/jp200756espa
dc.relation.referencesMikhailov, M. N., Bagatur'yants, A. A., & Kustov, L. M. (2003). Activation of ethane in the metathesis reaction on silica-supported tantalum hydride: A quantum-chemical study. Russian Chemical Bulletin, 52(1), 30-35. doi:10.1023/A:1022419625670spa
dc.relation.referencesMikhailov, M. N., & Kustov, L. M. (2005). Alkane activation by silica supported group VB metal hydrides. A quantum-chemical study. Russian Chemical Bulletin, 54(2), 300-311. doi:10.1007/s11172-005-0252-1spa
dc.relation.referencesNuñez-Zarur, F., Solans-Monfort, X., Rodríguez-Santiago, L., Pleixats, R., & Sodupe, M. (2011). Mechanistic insights into ring-closing enyne metathesis with the second-generation grubbs-hoveyda catalyst: A DFT study. Chemistry - A European Journal, 17(27), 7506-7520. doi:10.1002/chem.201003410spa
dc.relation.referencesNuñez-Zarur, F., Solans-Monfort, X., Rodríguez-Santiago, L., & Sodupe, M. (2012). Differences in the activation processes of phosphine-containing and grubbs-hoveyda-type alkene metathesis catalysts.Organometallics, 31(11), 4203-4215. doi:10.1021/om300150dspa
dc.relation.referencesNuñez-Zarur, F., Solans-Monfort, X., Rodríguez-Santiago, L., & Sodupe, M. (2013). Exo/endo selectivity of the ring-closing enyne methathesis catalyzed by second generation ru-based catalysts. influence of reactant substituents. ACS Catalysis, 3(2), 206-218. doi:10.1021/cs300580gspa
dc.relation.referencesPasha, F. A., Cavallo, L., & Basset, J. M. (2014). Mechanism of n-butane hydrogenolysis promoted by ta-hydrides supported on silica. ACS Catalysis, 4(6), 1868-1874. doi:10.1021/cs5001703spa
dc.relation.referencesPerdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/PhysRevLett.77.3865spa
dc.relation.referencesPerdew, J. P., & Wang, Y. (1992). Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 45(23), 13244-13249. doi:10.1103/PhysRevB.45.13244spa
dc.relation.referencesPoater, A., Solans-Monfort, X., Clot, E., Copéret, C., & Eisenstein, O. (2007). Understanding d0-olefin metathesis catalysts: Which metal, which ligands? Journal of the American Chemical Society, 129(26), 8207-8216. doi:10.1021/ja070625yspa
dc.relation.referencesPolshettiwar, V., Pasha, F. A., De Mallmann, A., Norsic, S., Thivolle-Cazat, J., & Basset, J. -. (2012). Efficient hydrogenolysis of alkanes at low temperature and pressure using tantalum hydride on MCM-41, and a quantum chemical study. ChemCatChem, 4(3), 363-369. doi:10.1002/cctc.201100130spa
dc.relation.referencesRascón, F., & Copéret, C. (2011). Alkylidene and alkylidyne surface complexes: Precursors and intermediates in alkane conversion processes on supported single-site catalysts. Journal of Organometallic Chemistry, 696(25), 4121-4131. doi:10.1016/j.jorganchem.2011.07.015spa
dc.relation.referencesRiache, N., Callens, E., Espinas, J., Dery, A., Samantaray, M. K., Dey, R., & Basset, J. M. (2015). Striking difference between alkane and olefin metathesis using the well-defined precursor [≡Si-O-WMe5]: Indirect evidence in favour of a bifunctional catalyst W alkylidene-hydride. Catalysis Science and Technology, 5(1), 280-285. doi:10.1039/c4cy00663aspa
dc.relation.referencesRoux, E. L., Taoufik, M., Chabanas, M., Alcor, D., Baudouin, A., Copéret, C., . . . Emsley, L. (2005). Well-defined surface tungstenocarbyne complexes through the reaction of [W(≡CtBu)(CH2tBu)3] with silica.Organometallics, 24(17), 4274-4279. doi:10.1021/om050086aspa
dc.relation.referencesSaggio, G., Taoufik, M., Basset, J. -., & Thivolle-Cazat, J. (2010). Poisoning experiments aimed at discriminating active and less-active sites of silica-supported tantalum hydride for alkane metathesis.ChemCatChem, 2(12), 1594-1598. doi:10.1002/cctc.201000199spa
dc.relation.referencesSamantaray, M. K., Callens, E., Abou-Hamad, E., Rossini, A. J., Widdifield, C. M., Dey, R., . . . Basset, J. -. (2014). WMe6 tamed by silica: Si-O-WMe5 as an efficient, well-defined species for alkane metathesis, leading to the observation of a supported W-methyl/methylidyne species. Journal of the American Chemical Society, 136(3), 1054-1061. doi:10.1021/ja410747gspa
dc.relation.referencesSchinzel, S., Chermette, H., Copéret, C., & Basset, J. -. (2008). Evaluation of the carbene hydride mechanism in the carbon-carbon bond formation process of alkane metathesis through a DFT study. Journal of the American Chemical Society, 130(25), 7984-7987. doi:10.1021/ja800474hspa
dc.relation.referencesSoignier, S., Saggio, G., Taoufik, M., Basset, J. -., & Thivolle-Cazat, J. (2014). Dynamic behaviour of tantalum hydride supported on silica or MCM-41 in the metathesis of alkanes. Catalysis Science and Technology, 4(1), 233-244. doi:10.1039/c3cy00545cspa
dc.relation.referencesSoignier, S., Taoufik, M., Le Roux, E., Saggio, G., Dablemont, C., Baudouin, A., . . . Maunders, B. M. (2006). Tantalum hydrides supported on MCM-41 mesoporous silica: Activation of methane and thermal evolution of the tantalum-methyl species. Organometallics, 25(7), 1569-1577. doi:10.1021/om050609espa
dc.relation.referencesSolans-Monfort, X., Chow, C., Gouré, E., Kaya, Y., Basset, J. -., Taoufik, M., . . . Eisenstein, O. (2012). Successive heterolytic cleavages of H2 achieve N2 splitting on silica-supported tantalum hydrides: A DFT proposed mechanism. Inorganic Chemistry, 51(13), 7237-7249. doi:10.1021/ic300498bspa
dc.relation.referencesSolans-Monfort, X., Clot, E., Copéret, C., & Eisenstein, O. (2005). d0 re-based olefin metathesis catalysts, re(≡CR)(=CHR)(X) (Y): The key role of X and Y ligands for efficient active sites. Journal of the American Chemical Society, 127(40), 14015-14025. doi:10.1021/ja053528ispa
dc.relation.referencesSolans-Monfort, X., Copéret, C., & Eisenstein, O. (2015). Metallacyclobutanes from schrock-type d0 metal alkylidene catalysts: Structural preferences and consequences in alkene metathesis. Organometallics, 34(9), 1668-1680. doi:10.1021/acs.organomet.5b00147spa
dc.relation.referencesSolans-Monfort, X., Copéret, C., & Eisenstein, O. (2010). Shutting down secondary reaction pathways: The essential role of the pyrrolyl ligand in improving silica supported d0-ML4 alkene metathesis catalysts from DFT calculations. Journal of the American Chemical Society, 132(22), 7750-7757. doi:10.1021/ja101597sspa
dc.relation.referencesSolans-Monfort, X., Filhol, J. -., Copéret, C., & Eisenstein, O. (2006). Structure, spectroscopic and electronic properties of a well defined silica supported olefin metathesis catalyst, [(≡SiO)re(≡CR)(=CHR)(CH 2R)], through DFT periodic calculations: Silica is just a large siloxy ligand. New Journal of Chemistry, 30(6), 842-850. doi:10.1039/b603426hspa
dc.relation.referencesSoulivong, D., Copéret, C., Thivolle-Cazat, J., Basset, J. -., Maunders, B. M., Pardy, R. B. A., & Sunley, G. J. (2004). Cross-metathesis of propane and methane: A catalytic reaction of C-C bond cleavage of a higher alkane by methane. Angewandte Chemie - International Edition, 43(40), 5366-5369. doi:10.1002/anie.200460982spa
dc.relation.referencesSzeto, K. C., Hardou, L., Merle, N., Basset, J. -., Thivolle-Cazat, J., Papaioannou, C., & Taoufik, M. (2012). Selective conversion of butane into liquid hydrocarbon fuels on alkane metathesis catalysts. Catalysis Science and Technology, 2(7), 1336-1339. doi:10.1039/c2cy20150jspa
dc.relation.referencesTaoufik, M., Le Roux, E., Thivolle-Cazat, J., Copéret, C., Basset, J. -., Maunders, B., & Sunley, G. J. (2006). Alumina supported tungsten hydrides, new efficient catalysts for alkane metathesis. Topics in Catalysis, 40(1-4), 65-70. doi:10.1007/s11244-006-0108-4spa
dc.relation.referencesUgliengo, P., Sodupe, M., Musso, F., Bush, I. J., Orlando, R., & Dovesi, R. (2008). Realistic models of hydroxylated amorphous silica surfaces and MCM- 41 mesoporous material simulated by large-scale periodic B3LYP calculations. Advanced Materials, 20(23), 4579-4583. doi:10.1002/adma.200801489spa
dc.relation.referencesVidal, V., Théolier, A., Thivolle-Cazat, J., & Basset, J. -. (1997). Metathesis of alkanes catalyzed by silica-supported transition metal hydrides. Science, 276(5309), 99-102. doi:10.1126/science.276.5309.99spa
dc.relation.referencesVidal, V., Théolier, A., Thivolle-Cazat, J., Basset, J. -., & Corker, J. (1996). Synthesis, characterization, and reactivity, in the C-H bond activation of cycloalkanes, of a silica-supported tantalum(III) monohydride complex: (≡SiO)2TaII-H. Journal of the American Chemical Society, 118(19), 4595-4602.spa
dc.relation.referencesZhao, Y., & Truhlar, D. G. (2008). Density functionals with broad applicability in chemistry. Accounts of Chemical Research, 41(2), 157-167. doi:10.1021/ar700111aspa
dc.relation.referencesZhao, Y., & Truhlar, D. G. (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120(1-3), 215-241. doi:10.1007/s00214-007-0310-xspa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem