Mostrar el registro sencillo del ítem

dc.creatorAnaya-Acevedo J.A.spa
dc.creatorEscobar-Martínez J.F.spa
dc.creatorMassone H.spa
dc.creatorBooman G.spa
dc.creatorQuiroz-Londoño O.M.spa
dc.creatorCañón-Barriga C.C.spa
dc.creatorMontoya-Jaramillo L.J.spa
dc.creatorPalomino-Ángel S.spa
dc.date.accessioned2017-12-19T19:36:49Z
dc.date.available2017-12-19T19:36:49Z
dc.date.created2017
dc.identifier.issn127353
dc.identifier.urihttp://hdl.handle.net/11407/4344
dc.description.abstractThis study aims to determine the wetland potential on a pixel basis on the floodplain of the Leon River: hydrology, hydrophytic vegetation and hydromorphic soils were taken into account. Field measurements and spatially explicit models were used to model surface hydrology and piezometric levels. Satellite data were used to derive inundated areas and vegetation. Existing maps from the national geographic institute (IGAC) were used to define the spatial distribution of hydromorphic soils. Special attention was paid to agricultural infrastructure, levees and diversion channels used to modify surface hydrology in order to promote plantations and cattle grazing. A total of 536 km2 meet one or more wetland conditions according to biophysical variables, but only 393 km2 were selected, using logical rules, as wetland pixels. The combination of biophysical variables to define wetland potential is discussed in terms of the spatial distribution and the implications for environmental resource management. © The author; licensee Universidad Nacional de Colombia.eng
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombiaspa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85026654774&doi=10.15446%2fdyna.v84n201.58600&partnerID=40&md5=8da771a005b124f7037551a369992b47spa
dc.sourceScopusspa
dc.titleIdentification of wetland areas in the context of agricultural development using remote sensing and GIS [Identificación de áreas de humedal en el contexto del desarrollo agrícola usando teledetección y SIG]spa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.contributor.affiliationAnaya-Acevedo, J.A., Universidad de Medellín, Medellín, Colombiaspa
dc.contributor.affiliationEscobar-Martínez, J.F., Universidad de Antioquia, Medellín, Colombiaspa
dc.contributor.affiliationMassone, H., Universidad de Mar del Plata, Mar del Plata, Argentinaspa
dc.contributor.affiliationBooman, G., Universidad de Mar del Plata, Mar del Plata, Argentinaspa
dc.contributor.affiliationQuiroz-Londoño, O.M., Universidad de Mar del Plata, Mar del Plata, Argentinaspa
dc.contributor.affiliationCañón-Barriga, C.C., Pontificia Universidad Javeriana de Cali, Cali, Colombiaspa
dc.contributor.affiliationMontoya-Jaramillo, L.J., Universidad de Medellín, Medellín, Colombiaspa
dc.contributor.affiliationPalomino-Ángel, S., Universidad de Medellín, Medellín, Colombiaspa
dc.identifier.doi10.15446/dyna.v84n201.58600
dc.subject.keywordAgricultureeng
dc.subject.keywordEnvironmental managementeng
dc.subject.keywordPiezometric levelseng
dc.subject.keywordTopographic wetness indexeng
dc.subject.keywordWetlandeng
dc.publisher.facultyFacultad de Ingenieríasspa
dc.abstractThis study aims to determine the wetland potential on a pixel basis on the floodplain of the Leon River: hydrology, hydrophytic vegetation and hydromorphic soils were taken into account. Field measurements and spatially explicit models were used to model surface hydrology and piezometric levels. Satellite data were used to derive inundated areas and vegetation. Existing maps from the national geographic institute (IGAC) were used to define the spatial distribution of hydromorphic soils. Special attention was paid to agricultural infrastructure, levees and diversion channels used to modify surface hydrology in order to promote plantations and cattle grazing. A total of 536 km2 meet one or more wetland conditions according to biophysical variables, but only 393 km2 were selected, using logical rules, as wetland pixels. The combination of biophysical variables to define wetland potential is discussed in terms of the spatial distribution and the implications for environmental resource management. © The author; licensee Universidad Nacional de Colombia.eng
dc.creator.affiliationUniversidad de Medellín, Medellín, Colombiaspa
dc.creator.affiliationUniversidad de Antioquia, Medellín, Colombiaspa
dc.creator.affiliationUniversidad de Mar del Plata, Mar del Plata, Argentinaspa
dc.creator.affiliationPontificia Universidad Javeriana de Cali, Cali, Colombiaspa
dc.creator.affiliationUniversidad de Medellín, Medellín, Colombiaspa
dc.relation.ispartofesDYNA (Colombia)spa
dc.relation.referencesCowardin, L.M., (1992) Classification of wetlands and deepwater habitats of the United States, p. 131. , U.S.F.a.W. Service, Editor. Government printing office: Washington, USAspa
dc.relation.referencesCavalcanti, I.F.A., Large scale and synoptic features associated with extreme precipitation over South America: A review and case studies for the first decade of the 21st century (2012) Atmospheric Research, 118, pp. 27-40spa
dc.relation.referencesHoyos, N., Impact of the 2010-2011 La Niña phenomenon in Colombia, South America: The human toll of an extreme weather event (2013) Applied Geography, 39, pp. 16-25spa
dc.relation.referencesBrooks, R., (2011) Proposed Hydrogeomorphic classification for wetlands of the Mid-Atlantic Region, pp. 31 and 207-219. , USA. Wetlandsspa
dc.relation.referencesEuliss, N.H., The wetland continumm: A conceptual framework for interpreting biological studies (2004) Wetlands, 24 (2), pp. 448-458spa
dc.relation.referencesCostanza, R., Changes in the global value of ecosystem services (2014) Global Environmental Change, 26, pp. 152-158spa
dc.relation.referencesJones, K., Monitoring and assessment of wetlands using Earth Observation: The GlobWetland project (2009) Journal of Environmental Management, 90 (7), pp. 2154-2169spa
dc.relation.referencesCombes, J.L., Deforestation and seigniorage in developing countries: A tradeoff? (2015) Ecological Economics, 116, pp. 220-230spa
dc.relation.referencesCeddia, M.G., Gunter, U., Corriveau-Bourque, A., Land tenure and agricultural expansion in Latin America: The role of Indigenous Peoples’ and local communities’ forest rights (2015) Global Environmental Change, 35, pp. 316-322spa
dc.relation.referencesReed, M.S., Who’s in and why? A typology of stakeholder analysis methods for natural resource management (2009) Journal of Environmental Management, 90 (5), pp. 1933-1949spa
dc.relation.referencesNelson, R.W., Weller, E., A better rationale for wetland management (1984) Environmental Management, 8 (4), pp. 295-308spa
dc.relation.references(2005) Ecosystems and human well-being: Biodiversity synthesis, p. 86. , in Island Press, W.R. Institute, Editor, Washington, D.Cspa
dc.relation.referencesPrance, T.G., A comparison of the efficacy of higher taxa and species numbers in the assessment of biodiversity in the neotropics (1994) Philosophical Transactions of The Royal Society, 345 (1311), pp. 89-99spa
dc.relation.referencesPadial, A.A., Bini, L.M., Thomas, S.M., The study of aquatic macrophytes in Neotropics: A scientometrical view of the main trends and gaps (2008) Brazilian Journal of Biology., 68 (4), pp. 1051-1059spa
dc.relation.referencesJohnston, R., WETwin: A structured approach to evaluating wetland management options in data-poor contexts (2013) Environmental Science & Policy, 34, pp. 3-17spa
dc.relation.referencesLong, C.M., Pavelsky, T.M., Remote sensing of suspended sediment concentration and hydrologic connectivity in a complex wetland environment (2013) Remote Sensing of Environment, 129, pp. 197-209spa
dc.relation.referencesWard, D.P., Floodplain inundation and vegetation dynamics in the Alligator Rivers region (Kakadu) of northern Australia assessed using optical and radar remote sensing (2014) Remote Sensing of Environment, 147, pp. 43-55spa
dc.relation.referencesZhao, X., Stein, A., Chen, X.-L., Monitoring the dynamics of wetland inundation by random sets on multi-temporal images (2011) Remote Sensing of Environment, 115 (9), pp. 2390-2401spa
dc.relation.referencesRestrepo, J.D., Kjerfve, B., Water discharge and sediment load from the western slopes of the colombian Andes with focus on rio San Juan (2000) The Journal of Geology, 108, pp. 17-33spa
dc.relation.referencesVillegas, P., Assessing the hydrochemistry of the Urabá Aquifer, Colombia by principal component analysis (2013) Journal of Geochemical Exploration, 134, pp. 120-129spa
dc.relation.referencesHolmes, R., Armanini, D.G., Yates, A.G., Effects of best management practice on ecological condition: Does location matter? (2016) Environmental Management, 57 (5), pp. 1062-1076spa
dc.relation.referencesMitsch, W.J., Tropical wetlands: Seasonal hydrologic pulsing, carbon sequestration and methane emissions (2010) Wetland Ecology and Management, 18, pp. 573-586spa
dc.relation.referencesFortin, M.J., Issues related to the detection of boundaries (2000) Lanscape Ecology, 15, pp. 453-466spa
dc.relation.referencesChen, L., Dynamic monitoring of wetland cover changes using time-series remote sensing imagery (2014) Ecological Informatics, 24, pp. 17-26spa
dc.relation.referencesHuang, C., Wetland inundation mapping and change monitoring using Landsat and airborne LiDAR data (2014) Remote Sensing of Environment, 141, pp. 231-242spa
dc.relation.referencesMarti-Cardona, B., Dolz-Ripolles, J., Lopez-Martinez, C., Wetland inundation monitoring by the synergistic use of ENVISAT/ASAR imagery and ancilliary spatial data (2013) Remote Sensing of Environment, 139, pp. 171-184spa
dc.relation.referencesPetus, C., Lewis, M., White, D., Monitoring temporal dynamics of Great Artesian Basin wetland vegetation, Australia, using MODIS NDVI (2013) Ecological Indicators, 34, pp. 41-52spa
dc.relation.referencesGrenier, M., (2008) Accuracy assessment method for wetland object-based classification, , in ISPRS, XXXVIII-4/C1. Calgary, Alberta, Canadaspa
dc.relation.referencesSalari, A., Quantifying tropical wetlands using field surveys, spatial statistics and remote sensing (2014) Wetlands, 34, pp. 565-574spa
dc.relation.referencesAnaya, J.A., Chuvieco-Salinero, E., Accuracy assessment of burned area products in the Orinoco basin (2012) Photogrammetric Engineering and Remote Sensing, 78 (1), pp. 53-60spa
dc.relation.referencesPalomino, S., Anaya, J.A., Evaluation of the causes of error in the MCD45 burned-area product of the savannas of northern South America (2012) DYNA, 79 (176), pp. 35-44spa
dc.relation.referencesCheng, T., Predicting leaf gravimetric water content from foliar reflectance across a range of plant species using continuous wavelet analysis (2012) Journal of Plant Physiology, 169 (12), pp. 1134-1142spa
dc.relation.referencesInfascelli, R., Testing different topographic indexes to predict wetlands distribution (2013) Procedia Environmental Sciences, 19, pp. 733-746spa
dc.relation.referencesSorensen, R., Zinko, U., Seibert, J., On the calculation of the topographic wetness index: Evaluation of different methods based on field observations (2006) Hydrology and Earth System Sciences, 10, pp. 101-112spa
dc.relation.referencesTarboton, D.G., (2009) Generalized terrain-based flow analysis of digital elevation models, in World IMACS/ MODSIM, pp. 2000-2006spa
dc.relation.references(2007) Estudio Semidetallado de Suelos 1:25000, , Departamento de Antioquia, Urabáspa
dc.relation.referencesEstudio general de suelos y zonificación de tierras (2007) Departamento de Antioquia, , 1:100000spa
dc.relation.references(2010) Keys to Soil Taxonomy, p. 338. , N.R.C. service, Editorspa
dc.relation.referencesOzesmi, S.L., Bauer, M.E., Satellite remote sensing of wetlands (2014) Wetlands Ecology and Management, 10 (5), pp. 381-402spa
dc.relation.referencesCongalton, R.G., Green, K., (2009) Assessing the accuracy of remotely sensed data, p. 183. , 2nd ed, Boca Raton, FL, USA: CRC Pressspa
dc.relation.referencesGiri, C., Status and distribution of mangrove forests of the world using earth observation satellite data (2011) Global Ecology and Biogeography, 20, pp. 154-159spa
dc.relation.referencesMcBratney, A.B., Webster, R., Choosing functions for semi-variograms of soil properties and fitting them to sampling estimates (1986) Journal of Soil Science, 37, pp. 617-639spa
dc.relation.referencesPollice, A., Lasinio, G.J., Two approaches to imputation and adjustment of air quality data from a composite monitoring network (2009) Journal of Data Science, 7, pp. 43-59spa
dc.relation.referencesAnaya, J., Colditz, R., Valencia, G., Land cover mapping of a tropical region by integrating multi-year data into an annual time series (2015) Remote Sensing, 7 (12), p. 15833spa
dc.relation.referencesLudwig, R., Schneider, P., Validation of digital elevation models from SRTM X-SAR for applications in hydrologic modeling (2006) ISPRS Journal of Photogrammetry and Remote Sensing, 60 (5), pp. 339-358spa
dc.relation.referencesZhu, J., Satish, M., A boundary element method for stochastic flow problems in a semiconfined aquifer with random boundary conditions (1997) Engineering Analysis with Boundary Elements, 19, pp. 199-208spa
dc.relation.references(2014), 2013 Supplement to the 2006 IPCC Guidelines for National GreenHouse Gas Inventories: Wetlands., I.f.G.E. Strategies, Editor. Intergovernmental Panel on Climate Change: Switzerlandspa
dc.relation.referencesRestrepo, J.D., Alvarado, E.M., (2011) 11.12 - Assessing major environmental issues in the Caribbean and Pacific coasts of Colombia, pp. 289-314. , South America: An overview of fluvial fluxes, coral reef degradation, and mangrove ecosystems impacted by river diversion, in: Wolanski E. and McLusky, D., Editors, Treatise on estuarine and coastal science, Academic Press: Walthamspa
dc.relation.referencesNaiman, R., Kantor, S., Bilby, R.E., River ecology and management (2013) Lessons from the Pacific Coastal ecoregion, p. 705. , ed. Springer: New Yorkspa
dc.relation.referencesWren, D.G., The evolution of an oxbow lake in the Mississippi alluvial floodplain (2008) Journal of Soil and Water Conservation, 63 (3), pp. 129-135spa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem