Show simple item record

dc.creatorEcheverría F.spa
dc.creatorBotero C.A.spa
dc.creatorCorrea E.spa
dc.creatorMeza D.spa
dc.creatorCastaño J.G.spa
dc.creatorGõmez M.A.spa
dc.date.accessioned2017-12-19T19:36:49Z
dc.date.available2017-12-19T19:36:49Z
dc.date.created2017
dc.identifier.issn15304388
dc.identifier.urihttp://hdl.handle.net/11407/4345
dc.description.abstractAs atmospheric corrosion of electrical contacts is a common cause of failure in electronics industry and at the same time miniaturization is a requirement in any modern electronic device, it is important to study the effects of corrosion in the surface morphology of metals widely used in that industry sector, such as gold, copper, nickel, and aluminium. Here, atomic force microscopy (AFM) has been used with that purpose, analysing flat surfaces of those metals both before and after exposure by several weeks to the effects of a contaminated atmosphere containing both NO2 and SO2 at constant temperature and humidity. Results indicate all metals suffered changes both in surface morphology and roughness. AFM phase mode images also indicated the occurrence of different species on the Ni and Cu surfaces after 11 weeks of exposure. Evidence of defects due to the corrosion attack was only observed for Ni. © 2017 IEEE.eng
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.spa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85025824338&doi=10.1109%2fTDMR.2017.2681280&partnerID=40&md5=a3c7e2ede0dff54eee59f3e70443f5ccspa
dc.sourceScopusspa
dc.titleHigh resolution morphological changes of Cu, Ni, Al, and Au surfaces due to atmospheric corrosionspa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.contributor.affiliationEcheverría, F., Centro de Investigaciõn, Innovaciõn y Desarrollo de Materiales, Universidad de Antioquia, Medellín, Colombiaspa
dc.contributor.affiliationBotero, C.A., Facultad de Ingenierías, Universidad de Medellín, Medellín, Colombiaspa
dc.contributor.affiliationCorrea, E., Grupo de Investigaciõn Materiales Con Impacto MAT and MPAC, Facultad de Ingenierías, Universidad de Medellín, Medellín, Colombiaspa
dc.contributor.affiliationMeza, D., Centro de Investigaciõn, Innovaciõn y Desarrollo de Materiales, Universidad de Antioquia, Medellín, Colombiaspa
dc.contributor.affiliationCastaño, J.G., Centro de Investigaciõn, Innovaciõn y Desarrollo de Materiales, Universidad de Antioquia, Medellín, Colombiaspa
dc.contributor.affiliationGõmez, M.A., Centro de Investigaciõn, Innovaciõn y Desarrollo de Materiales, Universidad de Antioquia, Medellín, Colombiaspa
dc.identifier.doi10.1109/TDMR.2017.2681280
dc.subject.keywordAluminumeng
dc.subject.keywordAtmospheric corrosioneng
dc.subject.keywordCoppereng
dc.subject.keywordElectrical contactseng
dc.subject.keywordGoldeng
dc.subject.keywordNickeleng
dc.subject.keywordAluminumeng
dc.subject.keywordAtmospheric humidityeng
dc.subject.keywordAtomic force microscopyeng
dc.subject.keywordCoppereng
dc.subject.keywordCorrosioneng
dc.subject.keywordElectric contactseng
dc.subject.keywordElectronics industryeng
dc.subject.keywordGoldeng
dc.subject.keywordNickeleng
dc.subject.keywordNitrogen compoundseng
dc.subject.keywordSurface morphologyeng
dc.subject.keywordConstant temperatureeng
dc.subject.keywordCorrosion attackeng
dc.subject.keywordElectrical contactseng
dc.subject.keywordElectronic deviceeng
dc.subject.keywordHigh resolutioneng
dc.subject.keywordIndustry sectorseng
dc.subject.keywordMorphological changeseng
dc.subject.keywordSurface morphology and roughnesseng
dc.subject.keywordAtmospheric corrosioneng
dc.publisher.facultyFacultad de Ingenieríasspa
dc.abstractAs atmospheric corrosion of electrical contacts is a common cause of failure in electronics industry and at the same time miniaturization is a requirement in any modern electronic device, it is important to study the effects of corrosion in the surface morphology of metals widely used in that industry sector, such as gold, copper, nickel, and aluminium. Here, atomic force microscopy (AFM) has been used with that purpose, analysing flat surfaces of those metals both before and after exposure by several weeks to the effects of a contaminated atmosphere containing both NO2 and SO2 at constant temperature and humidity. Results indicate all metals suffered changes both in surface morphology and roughness. AFM phase mode images also indicated the occurrence of different species on the Ni and Cu surfaces after 11 weeks of exposure. Evidence of defects due to the corrosion attack was only observed for Ni. © 2017 IEEE.eng
dc.creator.affiliationCentro de Investigaciõn, Innovaciõn y Desarrollo de Materiales, Universidad de Antioquia, Medellín, Colombiaspa
dc.creator.affiliationFacultad de Ingenierías, Universidad de Medellín, Medellín, Colombiaspa
dc.creator.affiliationGrupo de Investigaciõn Materiales Con Impacto MAT and MPAC, Facultad de Ingenierías, Universidad de Medellín, Medellín, Colombiaspa
dc.relation.ispartofesIEEE Transactions on Device and Materials Reliabilityspa
dc.relation.referencesZhai, E., Shi, Y., Gregory, M., The growth and capability development of electronics manufacturing service (ems) companies (2007) Int. J. Prod. Econ, 107 (1), pp. 1-19spa
dc.relation.referencesPeitz, M., Valletti, T., Reassessing competition concerns in electronic communications markets (2015) Telecommun. Policy, 39 (10), pp. 896-912spa
dc.relation.referencesHienonen, R., Lahtinen, R., (2007) Corrosion and Climatic Effects in Electronics, , Helsinki Finland: VTTspa
dc.relation.referencesIsleib, C.R., Nickel alloys in today's electronics industry (1987) Proc. 20th Annu. Connectors Interconectors Technol. Symp, pp. 1-8. , Birmingham, U.Kspa
dc.relation.referencesKoch, G.H., Brongers, M.P.H., Thompson, N.G., Virmani, Y.P., Payer, J.H., (2002) Corrosion Cost and Preventive Strategies in the United States, , McLean, VA, USA: Nace Intspa
dc.relation.referencesComizzoli, R.B., Frankenthal, R.P., Milner, P.C., Sinclair, J.D., Corrosion of electronic materials and devices (1986) Science, 234 (4774), pp. 340-345. , Octspa
dc.relation.referencesZhang, J.-G., Wen, X.-M., The effect of dust contamination on electric contacts (1986) IEEE Trans. Compon. Packag. Manuf. Technol, 9 (1), pp. 53-58. , Marspa
dc.relation.referencesGil, H., Calderón, J.A., Buitrago, C.P., Echavarría, A., Echeverría, F., Indoor atmospheric corrosion of electronic materials in tropicalmountain environments (2010) Corrosion Sci, 52 (2), pp. 327-337spa
dc.relation.referencesVeleva, L., Dzib-Pérez, L., González-Sánchez, J., Pérez, T., Initial stages of indoor atmospheric corrosion of electronics contact metals in humid tropical climate: Tin and nickel (2007) Revista de Metalurgia, 43 (2), pp. 101-110spa
dc.relation.referencesJouen, S., Jean, M., Hannoyer, B., Atmospheric corrosion of nickel in various outdoor environments (2004) Corrosion Sci, 46 (2), pp. 499-514spa
dc.relation.referencesOdnevall, I., Leygraf, C., The atmospheric corrosion of nickel in a rural atmosphere (1997) J. Electrochem. Soc, 144 (10), pp. 3518-3525spa
dc.relation.referencesKrätschmer, A., Wallinder, I.O., Leygraf, C., The evolution of outdoor copper patina (2002) Corrosion Sci, 44 (3), pp. 425-450spa
dc.relation.referencesAastrup, T., Wadsak, M., Schreiner, M., Leygraf, C., Experimental in situ studies of copper exposed to humidified air (2000) Corrosion Sci, 42 (6), pp. 957-967spa
dc.relation.referencesKleber, C., Weissenrieder, J., Schreiner, M., Leygraf, C., Comparison of the early stages of corrosion of copper and iron investigated by in situ tm-Afm (2002) Appl. Surf. Sci, 193 (1-4), pp. 245-253spa
dc.relation.referencesGonzález, J.A., Morcillo, M., Escudero, E., López, V., Otero, E., Atmospheric corrosion of bare and anodized aluminium in a wide range of environmental conditions. Part i: Visual observations and gravimetric results (2002) Surf. Coatings Technol, 153 (2-3), pp. 225-234spa
dc.relation.referencesAcevedo-Hurtado, P.O., Characterization of atmospheric corrosion in al/ag lap joints (2008) Corrosion Sci, 50 (11), pp. 3123-3131spa
dc.relation.referencesWeissenrieder, J., Leygraf, C., Göthelid, M., Karlsson, U.O., Photoelectron microscopy of filiform corrosion of aluminum (2003) Appl. Surf. Sci, 218 (1-4), pp. 155-162spa
dc.relation.referencesTao, L., Song, S., Zhang, X., Zhang, Z., Lu, F., Image analysis of atmospheric corrosion of field exposure high strength aluminium alloys (2008) Appl. Surf. Sci, 254 (21), pp. 6870-6874spa
dc.relation.referencesDan, Z., Muto, I., Hara, N., Effects of environmental factors on atmospheric corrosion of aluminium and its alloys under constant dew point conditions (2012) Corrosion Sci, 57, pp. 22-29. , Aprspa
dc.relation.referencesSun, S., Zheng, Q., Li, D., Wen, J., Long-term atmospheric corrosion behaviour of aluminium alloys 2024 and 7075 in urban, coastal and industrial environments (2009) Corrosion Sci, 51 (4), pp. 719-727spa
dc.relation.referencesOesch, S., Faller, M., Environmental effects on materials: The effect of the air pollutants so2, no2, no and o3 on the corrosion of copper, zinc and aluminium. A short literature survey and results of laboratory exposures (1997) Corrosion Sci, 39 (9), pp. 1505-1530. , Sepspa
dc.relation.referencesMazza, B., Pedeferri, P., Re, G., Sinigaglia, D., Behaviour of a galvanic cell simulating the atmospheric corrosion conditions of gold plated bronzes (1977) Corrosion Sci, 17 (6), pp. 535-541. , Janspa
dc.relation.referencesGeorges, C., Semmar, N., Boulmer-Leborgne, C., Effect of pulsed laser parameters on the corrosion limitation for electric connector coatings (2006) Opt. Lasers Eng, 44 (12), pp. 1283-1296spa
dc.relation.referencesSun, A.C., Moffat, H.K., Enos, D.G., George, C.S., Pore corrosion model for gold-plated copper contacts (2007) IEEE Trans. Compon. Packag. Manuf. Technol, 30 (4), pp. 796-804. , Decspa
dc.relation.referencesAntler, M., Drozdowicz, M.H., Fretting corrosion of gold-plated connector contacts (1981) Wear, 74 (1), pp. 27-50. , Decspa
dc.relation.referencesSvedung, O., Johansson, L.-G., Vannerberg, N.-G., Corrosion of gold-coated contact materials exposed to humid atmospheres containing low concentrations of so2 and no2 (1983) IEEE Trans. Compon., Hybrids, Manuf. Technol, 6 (3), pp. 349-355. , Sepspa
dc.relation.referencesHisakado, T., Effects of surface roughness and surface films on contact resistance (1977) Wear, 44 (2), pp. 345-359. , Sepspa
dc.relation.referencesMisra, P., Nagaraju, J., Electrical contact resistance in thin (=0.5 ?m) gold plated contacts: Effect of gold plating thickness (2010) IEEE Trans. Compon. Packag. Technol, 33 (4), pp. 830-835. , Decspa
dc.relation.referencesLiskiewicz, T., Neville, A., Achanta, S., Impact of corrosion on fretting damage of electrical contacts (2007) Proc. Annu. Holm Conf. Elect. Contacts, pp. 257-262. , Montreal, QC, Canadaspa
dc.relation.referencesImrell, T., The importance of the thickness of silver coating in the corrosion behaviour of copper contacts (1991) Proc. 37th IEEE HOLM Conf. Elect. Contacts, pp. 237-243. , Chicago, IL, USAspa
dc.relation.referencesWadsak, M., Schreiner, M., Aastrup, T., Leygraf, C., Combined in-situ investigations of atmospheric corrosion of copper with sfm and iras coupled with qcm (2000) Surf. Sci., Vols, 454-456 (1), pp. 246-250spa
dc.relation.referencesWang, H.C., Sun, S.G., Yan, J.W., Yang, H.Z., Zhou, Z.Y., In situ stm studies of electrochemical growth of nanostructured ni films and their anomalous ir properties (2005) J. Phys. Chem. B, 109 (10), pp. 4309-4316. , Marspa
dc.relation.referencesCao, Z., Gu, N., Investigation on gold corrosion by in situ quartz crystal microbalance and atomic force microscopy in self-Assembled processes of alkanethiol monolayers (2005) Mater. Lett, 59 (28), pp. 3687-3693spa
dc.relation.referencesLee, S.M., Krim, J., Scanning tunneling microscopy characterization of the surface morphology of copper films grown on mica and quartz (2005) Thin Solid Films, 489 (1-2), pp. 325-329spa
dc.relation.referencesWiesinger, R., Martina, I., Kleber, C., Schreiner, M., Influence of relative humidity and ozone on atmospheric silver corrosion (2013) Corrosion Sci, 77, pp. 69-76. , Decspa
dc.relation.referencesKleber, C., Hilfrich, U., Schreiner, M., In situ qcm and tm-Afm investigations of the early stages of degradation of silver and copper surfaces (2007) Appl. Surf. Sci, 253 (7), pp. 3712-3721spa
dc.relation.referencesGong, Y.S., Lee, C., Yang, C.K., Atomic force microscopy and raman spectroscopy studies on the oxidation of cu thin films (1995) J. Appl. Phys, 77 (10), pp. 5422-5425spa
dc.relation.referencesWatanabe, M., Higashi, Y., Ichino, T., Surface observation and depth profiling analysis studies of corrosion products on copper exposed outdoors (2003) J. Electrochem. Soc, 150 (2), pp. B37-B44spa
dc.relation.referencesDaniels, S.L., Sprunger, P.T., Kizilkaya, O., Lytle, D.A., Garno, J.C., Nanoscale surface characterization of aqueous copper corrosion: Effects of immersion interval and orthophosphate concentration (2013) Appl. Surf. Sci, 285, pp. 823-831. , Novspa
dc.relation.referencesCastaño, J.G., De La Fuente, D., Morcillo, M., A laboratory study of the effect of no2 on the atmospheric corrosion of zinc (2007) Atmos. Environ, 41 (38), pp. 8681-8696spa
dc.relation.referencesHorcas, I., Wsxm: A software for scanning probe microscopy and a tool for nanotechnology (2007) Rev. Sci. Instrum, 78 (1). , Art. no. 13705spa
dc.relation.referencesLeygraf, C., Atmospheric corrosion (2002) Corrosion Mechanisms in Theory and Practice, pp. 529-562. , 3rd ed. Boca Raton, FL, USA: CRCspa
dc.relation.referencesPark, J.-H., Natesan, K., Oxidation of copper and electronic transport in copper oxides (1993) Oxidation Metals, 39 (5), pp. 411-435spa
dc.relation.referencesFeliu, S., Mariaca, L., Simancas, J., González, J.A., Morcillo, M., Effect of no2 and/or so2 atmospheric contaminants and relative humidity on copper corrosion (2003) Revista de Metalurgia, 39 (4), pp. 279-288. , Augspa
dc.relation.referencesOdnevall, I., Leygraf, C., Atmospheric corrosion of copper in a rural atmosphere (1995) J. Electrochem. Soc, 142 (11), pp. 3682-3689spa
dc.relation.referencesRice, D.W., Phipps, P.B.P., Tremoureux, R., Atmospheric corrosion of nickel (1980) J. Electrochem. Soc, 127 (3), pp. 563-568spa
dc.relation.referencesGraedel, T.E., Leygraf, C., Corrosion mechanisms for nickel exposed to the atmosphere (2000) J. Electrochem. Soc, 147 (3), pp. 1010-1014spa
dc.relation.referencesGraedel, T.E., Corrosion mechanisms for aluminum exposed to the atmosphere (1989) J. Electrochem. Soc, 136 (4), pp. 204C-212Cspa
dc.relation.referencesCastaño, J.G., Arroyave, C., Morcillo, M., Characterization of atmospheric corrosion products of zinc exposed to so2 and no2 using xps and gixd (2007) J. Mater. Sci, 42 (23), pp. 9654-9662. , Decspa
dc.relation.referencesGusmano, G., Montanari, R., Kaciulis, S., Montesperelli, G., Denk, R., Gold corrosion': Red stains on a gold austrian ducat (2004) Appl. Phys. A, Solids Surf, 79 (2), pp. 205-211. , Julspa
dc.relation.referencesMayerhofer, K.E., Piplits, K., Traum, R., Griesser, M., Hutter, H., Investigations of corrosion phenomena on gold coins with sims (2005) Appl. Surf. Sci, 252 (1), pp. 133-138spa
dc.relation.referencesEnos, D.G., Glauner, C.S., Sorensen, N.R., Atmospheric degradation of gold and nickel-gold electroplated copper connectors (2003) Proc. 204th Meeting Electrochem. Socspa
dc.relation.referencesPark, Y.W., Jung, J.P., Lee, H.Y., Overview of fretting corrosion in electrical connectors (2006) Int. J. Autom. Technol, 7 (1), pp. 75-82spa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record