Mostrar el registro sencillo del ítem

dc.creatorVera-Ciro C.spa
dc.creatorD'Onghia E.spa
dc.date.accessioned2017-12-19T19:36:52Z
dc.date.available2017-12-19T19:36:52Z
dc.date.created2016
dc.identifier.issn0004637X
dc.identifier.urihttp://hdl.handle.net/11407/4377
dc.description.abstractWe employ high-resolution N-body simulations of isolated spiral galaxy models, from low-amplitude, multi-armed galaxies to Milky Way-like disks, to estimate the vertical action of ensembles of stars in an axisymmetrical potential. In the multi-armed galaxy the low-amplitude arms represent tiny perturbations of the potential, hence the vertical action for a set of stars is conserved, although after several orbital periods of revolution the conservation degrades significantly. For a Milky Way-like galaxy with vigorous spiral activity and the formation of a bar, our results show that the potential is far from steady, implying that the action is not a constant of motion. Furthermore, because of the presence of high-amplitude arms and the bar, considerable in-plane and vertical heating occurs that forces stars to deviate from near-circular orbits, reducing the degree at which the actions are conserved for individual stars, in agreement with previous results, but also for ensembles of stars. If confirmed, this result has several implications, including the assertion that the thick disk of our Galaxy forms by radial migration of stars, under the assumption of the conservation of the action describing the vertical motion of stars. © 2016. The American Astronomical Society. All rights reserved.eng
dc.language.isoeng
dc.publisherInstitute of Physics Publishingspa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84976345033&doi=10.3847%2f0004-637X%2f824%2f1%2f39&partnerID=40&md5=453039f708df618675b2062dddad8c89spa
dc.sourceScopusspa
dc.titleON the CONSERVATION of the VERTICAL ACTION in GALACTIC DISKSspa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.contributor.affiliationVera-Ciro, C., Department of Astronomy, University of Wisconsin, 2535 Sterling Hall, 475 N. Charter Street, Madison, WI, 53076, USA, Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Cra 87 N30-65, Medellín, Colombiaspa
dc.contributor.affiliationD'Onghia, E., Department of Astronomy, University of Wisconsin, 2535 Sterling Hall, 475 N. Charter Street, Madison, WI, 53076, USA, Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Cra 87 N30-65, Medellín, Colombiaspa
dc.identifier.doi10.3847/0004-637X/824/1/39
dc.subject.keywordgalaxies: kinematics and dynamicseng
dc.subject.keywordGalaxy: diskeng
dc.subject.keywordGalaxy: evolutioneng
dc.subject.keywordstars: kinematics and dynamicseng
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.abstractWe employ high-resolution N-body simulations of isolated spiral galaxy models, from low-amplitude, multi-armed galaxies to Milky Way-like disks, to estimate the vertical action of ensembles of stars in an axisymmetrical potential. In the multi-armed galaxy the low-amplitude arms represent tiny perturbations of the potential, hence the vertical action for a set of stars is conserved, although after several orbital periods of revolution the conservation degrades significantly. For a Milky Way-like galaxy with vigorous spiral activity and the formation of a bar, our results show that the potential is far from steady, implying that the action is not a constant of motion. Furthermore, because of the presence of high-amplitude arms and the bar, considerable in-plane and vertical heating occurs that forces stars to deviate from near-circular orbits, reducing the degree at which the actions are conserved for individual stars, in agreement with previous results, but also for ensembles of stars. If confirmed, this result has several implications, including the assertion that the thick disk of our Galaxy forms by radial migration of stars, under the assumption of the conservation of the action describing the vertical motion of stars. © 2016. The American Astronomical Society. All rights reserved.eng
dc.creator.affiliationDepartment of Astronomy, University of Wisconsin, 2535 Sterling Hall, 475 N. Charter Street, Madison, WI, 53076, USA, Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Cra 87 N30-65, Medellín, Colombiaspa
dc.relation.ispartofesAstrophysical Journalspa
dc.relation.ispartofesAstrophysical Journal Volume 824, Issue 1, 10 June 2016, Article number 39spa
dc.relation.referencesArnold, V. I. (1978). Mathematical Methods of Classical Mechanics.spa
dc.relation.referencesAthanassoula, E., & Martínez-Valpuesta, I. (2008). ASP Conf.Ser.390, Pathways through an Eclectic Universe, 454.spa
dc.relation.referencesBinney, J., & Spergel, D. (1984). Spectral stellar dynamics - II. the action integrals. MNRAS, 206.spa
dc.relation.referencesBinney, J., & Tremaine, S. (1987). Galactic Dynamics.spa
dc.relation.referencesBird, J. C., Kazantzidis, S., & Weinberg, D. H. (2012). Radial mixing in galactic discs: The effects of disc structure and satellite bombardment. Monthly Notices of the Royal Astronomical Society, 420(2), 913-925. doi:10.1111/j.1365-2966.2011.19728.xspa
dc.relation.referencesBovy, J., Hogg, D. W., & Rix, H. -. (2009). Galactic masers and the milky way circular velocity. Astrophysical Journal, 704(2), 1704-1709. doi:10.1088/0004-637X/704/2/1704spa
dc.relation.referencesBrunetti, M., Chiappini, C., & Pfenniger, D. (2011). Stellar diffusion in barred spiral galaxies. Astronomy and Astrophysics, 534 doi:10.1051/0004-6361/201117566spa
dc.relation.referencesCandy, J., & Rozmus, W. (1991). A symplectic integration algorithm for separable hamiltonian functions. Journal of Computational Physics, 92(1), 230-256. doi:10.1016/0021-9991(91)90299-Zspa
dc.relation.referencesCarlberg, R. G., & Freedman, W. L. (1985). Dissipative models of spiral galaxies. ApJ, 298.spa
dc.relation.referencesDaniel, K. J., & Wyse, R. F. G. (2015). Constraints on radial migration in spiral galaxies - I. analytic criterion for capture at corotation. Monthly Notices of the Royal Astronomical Society, 447(4), 3576-3592. doi:10.1093/mnras/stu2683spa
dc.relation.referencesD'Onghia, E. (2015). Disk-stability constraints on the number of arms in spiral galaxies. Astrophysical Journal Letters, 808(1) doi:10.1088/2041-8205/808/1/L8spa
dc.relation.referencesD'Onghia, E., Vogelsberger, M., & Hernquist, L. (2013). Self-perpetuating spiral arms in disk galaxies. Astrophysical Journal, 766(1) doi:10.1088/0004-637X/766/1/34spa
dc.relation.referencesDormand, J. R., & Prince, P. J. (1980). A family of embedded runge-kutta formulae. Journal of Computational and Applied Mathematics, 6(1), 19-26. doi:10.1016/0771-050X(80)90013-3spa
dc.relation.referencesEddington, A. S. (1915). The dynamics of a stellar system. third paper: Oblate and other distributions. MNRAS, 76.spa
dc.relation.referencesEdvardsson, B., Andersen, J., Gustafsson, B., Lambert, D. L., Nissen, P. E., & Tomkin, J. (1993). A&A, 275, 101-152.spa
dc.relation.referencesGoldstein, H. (1980). Classical Mechanics.spa
dc.relation.referencesGrand, R. J. J., Kawata, D., & Cropper, M. (2015). Impact of radial migration on stellar and gas radial metallicity distribution. Monthly Notices of the Royal Astronomical Society, 447(4), 4018-4027. doi:10.1093/mnras/stv016spa
dc.relation.referencesGrand, R. J. J., Kawata, D., & Cropper, M. (2012). The dynamics of stars around spiral arms. Monthly Notices of the Royal Astronomical Society, 421(2), 1529-1538. doi:10.1111/j.1365-2966.2012.20411.xspa
dc.relation.referencesHalle, A., Di Matteo, P., Haywood, M., & Combes, F. (2015). Quantifying stellar radial migration in an N-body simulation: Blurring, churning, and the outer regions of galaxy discs. Astronomy and Astrophysics, 578 doi:10.1051/0004-6361/201525612spa
dc.relation.referencesHernquist, L. (1990). An analytical model for spherical galaxies and bulges. Astrophysical Journal, 356(2), 359-364.spa
dc.relation.referencesHernquist, L. (1993). N-body realizations of compound galaxies. Astrophysical Journal, Supplement Series, 86(2), 389-400.spa
dc.relation.referencesJeans, J. H. (1919). Problems of Cosmogony and Stellar Dynamics.spa
dc.relation.referencesJenkins, A. (1992). MNRAS, 257.spa
dc.relation.referencesJenkins, A., & Binney, J. (1990). MNRAS, 245.spa
dc.relation.referencesKazantzids, S., Bullock, J. S., Zentner, A. R., Kravtsov, A. V., & Moustakas, L. A. (2008). Cold dark matter substructure and galactic disks. I. morphological signatures of hierarchical satellite accretion.Astrophysical Journal, 688(1), 254-276. doi:10.1086/591958spa
dc.relation.referencesLoebman, S. R., Roškar, R., Debattista, V. P., Ivezić, Ž., Quinn, T. R., & Wadsley, J. (2011). The genesis of the milky way's thick disk via stellar migration. Astrophysical Journal, 737(1) doi:10.1088/0004-637X/737/1/8spa
dc.relation.referencesMartinez-Valpuesta, I., Shlosman, I., & Heller, C. (2006). Evolution of stellar bars in live axisymmetric halos: Recurrent buckling and secular growth. Astrophysical Journal, 637(1 I), 214-226. doi:10.1086/498338spa
dc.relation.referencesMerritt, D., & Sellwood, J. A. (1994). Bending instabilities in stellar systems. Astrophysical Journal, 425(2), 551-567.spa
dc.relation.referencesMihalas, D., & Binney, J. (1981). Galactic Astronomy: Structure and Kinematics.spa
dc.relation.referencesMinchev, I., & Famaey, B. (2010). A new mechanism for radial migration in galactic disks: Spiral-bar resonance overlap. Astrophysical Journal, 722(1), 112-121. doi:10.1088/0004-637X/722/1/112spa
dc.relation.referencesMinchev, I., Famaey, B., Combes, F., Di Matteo, P., Mouhcine, M., & Wozniak, H. (2011). Radial migration in galactic disks caused by resonance overlap of multiple patterns: Self-consistent simulations.Astronomy and Astrophysics, 527(22) doi:10.1051/0004-6361/201015139spa
dc.relation.referencesOllongren, A. (1962). BAN, 16, 241.spa
dc.relation.referencesPettitt, A. R., Dobbs, C. L., Acreman, D. M., & Bate, M. R. (2015). The morphology of the milky way - II. reconstructing CO maps from disc galaxies with live stellar distributions. Monthly Notices of the Royal Astronomical Society, 449(4), 3911-3926. doi:10.1093/mnras/stv600spa
dc.relation.referencesPfenniger, D. (1984). The 3D dynamics of barred galaxies. A&A, 134.spa
dc.relation.referencesPfenniger, D., & Friedli, D. (1991). A&A, 252, 75.spa
dc.relation.referencesReid, M. J., Menten, K. M., Brunthaler, A., Zheng, X. W., Dame, T. M., Xu, Y., . . . Bartkiewicz, A. (2014). Trigonometric parallaxes of high mass star forming regions: The structure and kinematics of the milky way. Astrophysical Journal, 783(2) doi:10.1088/0004-637X/783/2/130spa
dc.relation.referencesRoškar, R., Debattista, V. P., Quinn, T. R., Stinson, G. S., & Wadsley, J. (2008). Riding the spiral waves: Implications of stellar migration for the properties of galactic disks. Astrophysical Journal, 684(2 PART 2), L79-L82. doi:10.1086/592231spa
dc.relation.referencesRoškar, R., Debattista, V. P., Quinn, T. R., & Wadsley, J. (2012). Radial migration in disc galaxies-I. transient spiral structure and dynamics. Monthly Notices of the Royal Astronomical Society, 426(3), 2089-2106. doi:10.1111/j.1365-2966.2012.21860.xspa
dc.relation.referencesSchönrich, R., & Binney, J. (2009). Origin and structure of the galactic disc(s). Monthly Notices of the Royal Astronomical Society, 399(3), 1145-1156. doi:10.1111/j.1365-2966.2009.15365.xspa
dc.relation.referencesSellwood, J. A., & Binney, J. J. (2002). Radial mixing in galactic discs. Monthly Notices of the Royal Astronomical Society, 336(3), 785-796. doi:10.1046/j.1365-8711.2002.05806.xspa
dc.relation.referencesSellwood, J. A., & Carlberg, R. G. (1984). Spiral instabilities provoked by accretion and star formation. ApJ, 282, 61-74.spa
dc.relation.referencesSerenelli, A. M., Basu, S., Ferguson, J. W., & Asplund, M. (2009). New solar composition: The problem with solar models revisited. Astrophysical Journal, 705(2 PART 2), L123-L127. doi:10.1088/0004-637X/705/2/L123spa
dc.relation.referencesSolway, M., Sellwood, J. A., & Schönrich, R. (2012). Radial migration in galactic thick discs. Monthly Notices of the Royal Astronomical Society, 422(2), 1363-1383. doi:10.1111/j.1365-2966.2012.20712.xspa
dc.relation.referencesSpitzer, L., & Schwarzschild, M. (1953). The possible influence of interstellar clouds on stellar velocities. II. ApJ, 118.spa
dc.relation.referencesSpringel, V., Di Matteo, T., & Hernquist, L. (2005). Modelling feedback from stars and black holes in galaxy mergers. Monthly Notices of the Royal Astronomical Society, 361(3), 776-794. doi:10.1111/j.1365-2966.2005.09238.xspa
dc.relation.referencesToomre, A. (1981). The Structure and Evolution of Normal Galaxies, 111-136.spa
dc.relation.referencesVera-Ciro, C., D'Onghia, E., Navarro, J., & Abadi, M. (2014). ApJ, 794(2).spa
dc.relation.referencesVillalobos, A., & Helmi, A. (2008). Simulations of minor mergers - I. general properties of thick discs. Monthly Notices of the Royal Astronomical Society, 391(4), 1806-1827. doi:10.1111/j.1365-2966.2008.13979.xspa
dc.relation.referencesWielen, R., Fuchs, B., & Dettbarn, C. (1996). On the birth-place of the sun and the places of formation of other nearby stars. Astronomy and Astrophysics, 314(2), 438-447.spa
dc.relation.referencesYurin, D., & Springel, V. (2015). MNRAS, 452, 2343.spa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem