Mostrar el registro sencillo del ítem

dc.creatorAcelas N.Y.spa
dc.creatorFlórez E.spa
dc.date.accessioned2017-12-19T19:36:52Z
dc.date.available2017-12-19T19:36:52Z
dc.date.created2017
dc.identifier.issn19443994
dc.identifier.urihttp://hdl.handle.net/11407/4380
dc.description.abstractThe overabundance of phosphorus in water causes eutrophication of aquatic environments. As a consequence, developing an adsorbent and understanding the adsorption process to remove phosphate is vital for the prevention of eutrophication in lakes. In this study, quantum chemical calculations were used to simulate the adsorption of phosphate on variably charged Al-(hydr)oxide, taking into account both explicit and implicit solvation. The corresponding adsorption reactions were modeled via ligand exchange between phosphate species and surface functional groups (-H2O/-OH-). Gibbs free energies of phosphate adsorption, for inner and outer sphere complexes, using three different simulated pH conditions (acidic, intermediate, and basic) were estimated. The theoretical results indicate that the thermodynamic favorability of phosphate adsorption on Al-(hydr)oxide is directly related to pH. At intermediate pH condition, H-bonded and MM1 complexes present the most thermodynamically favorable mode of adsorption with -126.2 kJ/mol and -107.8 kJ/mol, respectively. At high pH, simulated IR spectra show that the values of P-O and P-OH stretching modes shifted to higher frequencies with respect to those at low pH. © 2017 Desalination Publications. All rights reserved.eng
dc.language.isoeng
dc.publisherTaylor and Francis Inc.spa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85017169971&doi=10.5004%2fdwt.2017.0287&partnerID=40&md5=fb55be8bc0d23854fb7136155d17f322spa
dc.sourceScopusspa
dc.titleTheoretical study of phosphate adsorption from wastewater using Al-(hydr)oxidespa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.contributor.affiliationAcelas, N.Y., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Colombia, Carrera 87 No. 30-65, Medellín, Colombiaspa
dc.contributor.affiliationFlórez, E., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Colombia, Carrera 87 No. 30-65, Medellín, Colombiaspa
dc.identifier.doi10.5004/dwt.2017.0287
dc.subject.keywordAdsorptioneng
dc.subject.keywordAl-(hydr)oxideeng
dc.subject.keywordDFTeng
dc.subject.keywordGibbs free energyeng
dc.subject.keywordIReng
dc.subject.keywordPHeng
dc.subject.keywordPhosphateeng
dc.subject.keywordWastewatereng
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.abstractThe overabundance of phosphorus in water causes eutrophication of aquatic environments. As a consequence, developing an adsorbent and understanding the adsorption process to remove phosphate is vital for the prevention of eutrophication in lakes. In this study, quantum chemical calculations were used to simulate the adsorption of phosphate on variably charged Al-(hydr)oxide, taking into account both explicit and implicit solvation. The corresponding adsorption reactions were modeled via ligand exchange between phosphate species and surface functional groups (-H2O/-OH-). Gibbs free energies of phosphate adsorption, for inner and outer sphere complexes, using three different simulated pH conditions (acidic, intermediate, and basic) were estimated. The theoretical results indicate that the thermodynamic favorability of phosphate adsorption on Al-(hydr)oxide is directly related to pH. At intermediate pH condition, H-bonded and MM1 complexes present the most thermodynamically favorable mode of adsorption with -126.2 kJ/mol and -107.8 kJ/mol, respectively. At high pH, simulated IR spectra show that the values of P-O and P-OH stretching modes shifted to higher frequencies with respect to those at low pH. © 2017 Desalination Publications. All rights reserved.eng
dc.creator.affiliationDepartamento de Facultad de Ciencias Básicas, Universidad de Medellín, Colombia, Carrera 87 No. 30-65, Medellín, Colombiaspa
dc.relation.ispartofesDesalination and Water Treatmentspa
dc.relation.ispartofesDesalination and Water Treatment Volume 60, 1 January 2017, Pages 88-105spa
dc.relation.referencesAcelas, N. Y., Flórez, E., & López, D. (2015). Phosphorus recovery through struvite precipitation from wastewater: Effect of the competitive ions. Desalination and Water Treatment, 54(9), 2468-2479. doi:10.1080/19443994.2014.902337spa
dc.relation.referencesAcelas, N. Y., Martin, B. D., López, D., & Jefferson, B. (2015). Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media. Chemosphere, 119, 1353-1360. doi:10.1016/j.chemosphere.2014.02.024spa
dc.relation.referencesAcelas, N. Y., Mejia, S. M., Mondragón, F., & Flórez, E. (2013). Density functional theory characterization of phosphate and sulfate adsorption on fe-(hydr)oxide: Reactivity, pH effect, estimation of gibbs free energies, and topological analysis of hydrogen bonds. Computational and Theoretical Chemistry, 1005, 16-24. doi:10.1016/j.comptc.2012.11.002spa
dc.relation.referencesAwual, M. R., & Jyo, A. (2011). Assessing of phosphorus removal by polymeric anion exchangers. Desalination, 281(1), 111-117. doi:10.1016/j.desal.2011.07.047spa
dc.relation.referencesAwual, M. R., Jyo, A., El-Safty, S. A., Tamada, M., & Seko, N. (2011). A weak-base fibrous anion exchanger effective for rapid phosphate removal from water. Journal of Hazardous Materials, 188(1-3), 164-171. doi:10.1016/j.jhazmat.2011.01.092spa
dc.relation.referencesAwual, M. R., Jyo, A., Ihara, T., Seko, N., Tamada, M., & Lim, K. T. (2011). Enhanced trace phosphate removal from water by zirconium(IV) loaded fibrous adsorbent. Water Research, 45(15), 4592-4600. doi:10.1016/j.watres.2011.06.009spa
dc.relation.referencesBabatunde, A. O., Zhao, Y. Q., Yang, Y., & Kearney, P. (2008). Reuse of dewatered aluminium-coagulated water treatment residual to immobilize phosphorus: Batch and column trials using a condensed phosphate. Chemical Engineering Journal, 136(2-3), 108-115. doi:10.1016/j.cej.2007.03.013spa
dc.relation.referencesBiswas, B. K., Inoue, K., Ghimire, K. N., Harada, H., Ohto, K., & Kawakita, H. (2008). Removal and recovery of phosphorus from water by means of adsorption onto orange waste gel loaded with zirconium.Bioresource Technology, 99(18), 8685-8690. doi:10.1016/j.biortech.2008.04.015spa
dc.relation.referencesBlaney, L. M., Cinar, S., & SenGupta, A. K. (2007). Hybrid anion exchanger for trace phosphate removal from water and wastewater. Water Research, 41(7), 1603-1613. doi:10.1016/j.watres.2007.01.008spa
dc.relation.referencesChen, Y. S. R., Butler, J. N., & Stumm, W. (1973). Kinetic study of phosphate reaction with aluminum oxide and kaolinite. Environmental Science and Technology, 7(4), 327-332. doi:10.1021/es60076a007spa
dc.relation.referencesChubar, N. I., Kanibolotskyy, V. A., Strelko, V. V., Gallios, G. G., Samanidou, V. F., Shaposhnikova, T. O., . . . Zhuravlev, I. Z. (2005). Adsorption of phosphate ions on novel inorganic ion exchangers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 255(1-3), 55-63. doi:10.1016/j.colsurfa.2004.12.015spa
dc.relation.referencesCumbal, L., & Sengupta, A. K. (2005). Arsenic removal using polymer-supported hydrated iron(III) oxide nanoparticles: Role of donnan membrane effect. Environmental Science and Technology, 39(17), 6508-6515. doi:10.1021/es050175espa
dc.relation.referencesDutta, P. K., Ray, A. K., Sharma, V. K., & Millero, F. J. (2004). Adsorption of arsenate and arsenite on titanium dioxide suspensions. Journal of Colloid and Interface Science, 278(2), 270-275. doi:10.1016/j.jcis.2004.06.015spa
dc.relation.referencesGenz, A., Kornmüller, A., & Jekel, M. (2004). Advanced phosphorus removal from membrane filtrates by adsorption on activated aluminium oxide and granulated ferric hydroxide. Water Research, 38(16), 3523-3530. doi:10.1016/j.watres.2004.06.006spa
dc.relation.referencesHe, G., Pan, G., & Zhang, M. (2011). Studies on the reaction pathway of arsenate adsorption at water-TiO2 interfaces using density functional theory. Journal of Colloid and Interface Science, 364(2), 476-481. doi:10.1016/j.jcis.2011.08.040spa
dc.relation.referencesHe, G., Zhang, M., & Pan, G. (2009). Influence of pH on initial concentration effect of arsenate adsorption on TiO2 surfaces: Thermodynamic, DFT, and EXAFS interpretations. Journal of Physical Chemistry C, 113(52), 21679-21686. doi:10.1021/jp906019espa
dc.relation.referencesJaffer, Y., Clark, T. A., Pearce, P., & Parsons, S. A. (2002). Potential phosphorus recovery by struvite formation. Water Research, 36(7), 1834-1842. doi:10.1016/S0043-1354(01)00391-8spa
dc.relation.referencesKeith, T. A., & Frisch, M. J. (1994). Inclusion of explicit solvent molecules in a self-consistent-reaction field model of solvation, modeling the hydrogen bond. American Chemical Society, 22-35.spa
dc.relation.referencesKney, A. D., & Zhao, D. (2004). A pilot study on phosphate and nitrate removal from secondary wastewater effluent using a selective ion exchange process. Environmental Technology, 25(5), 533-542.spa
dc.relation.referencesKubicki, J. D. (1998). Molecular cluster models of aluminum oxide and aluminum hydroxide surfaces. American Mineralogist, 83(9-10), 1054-1066.spa
dc.relation.referencesKuzawa, K., Jung, Y. -., Kiso, Y., Yamada, T., Nagai, M., & Lee, T. -. (2006). Phosphate removal and recovery with a synthetic hydrotalcite as an adsorbent. Chemosphere, 62(1), 45-52. doi:10.1016/j.chemosphere.2005.04.015spa
dc.relation.referencesLadeira, A. C. Q., Ciminelli, V. S. T., Duarte, H. A., Alves, M. C. M., & Ramos, A. Y. (2001). Mechanism of anion retention from EXAFS and density functional calculations: Arsenic (V) adsorbed on gibbsite.Geochimica Et Cosmochimica Acta, 65(8), 1211-1217. doi:10.1016/S0016-7037(00)00581-0spa
dc.relation.referencesLee, S. I., Weon, S. Y., Lee, C. W., & Koopman, B. (2003). Removal of nitrogen and phosphate from wastewater by addition of bittern. Chemosphere, 51(4), 265-271. doi:10.1016/S0045-6535(02)00807-Xspa
dc.relation.referencesLuengo, C. V., Castellani, N. J., & Ferullo, R. M. (2015). Quantum chemical study on surface complex structures of phosphate on gibbsite. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 147, 193-199. doi:10.1016/j.saa.2015.03.013spa
dc.relation.referencesManning, B. A., Fendorf, S. E., & Goldberg, S. (1998). Surface structures and stability of arsenic (III) on goethite: Spectroscopic evidence for inner-sphere complexes. Environmental Science and Technology, 32(16), 2383-2388. doi:10.1021/es9802201spa
dc.relation.referencesMidorikawa, I., Aoki, H., Omori, A., Shimizu, T., Kawaguchi, Y., Kassai, K., & Murakami, T. (2008). Recovery of high purity phosphorus from municipal wastewater secondary effluent by a high-speed adsorbentdoi:10.2166/wst.2008.537spa
dc.relation.referencesPaul, K. W., Borda, M. J., Kubicki, J. D., & Sparks, D. L. (2005). Effect of dehydration on sulfate coordination and speciation at the fe-(hydr)oxide-water interface: A molecular orbital/density functional theory and fourier transform infrared spectroscopic investigation. Langmuir, 21(24), 11071-11078. doi:10.1021/la050648vspa
dc.relation.referencesPaul, K. W., Kubicki, J. D., & Sparks, D. L. (2006). Quantum chemical calculations of sulfate adsorption at the AI- and fe-(hydr)oxide-H2O interface - estimation of gibbs free energies. Environmental Science and Technology, 40(24), 7717-7724. doi:10.1021/es061139yspa
dc.relation.referencesPaul, K. W., Kubicki, J. D., & Sparks, D. L. (2007). Sulphate adsorption at the fe (hydr)oxide-H2O interface: Comparison of cluster and periodic slab DFT predictions. European Journal of Soil Science, 58(4), 978-988. doi:10.1111/j.1365-2389.2007.00936.xspa
dc.relation.referencesPersson, P., Nilsson, N., & Sjöberg, S. (1996). Structure and bonding of orthophosphate ions at the iron oxide-aqueous interface. Journal of Colloid and Interface Science, 177(1), 263-275. doi:10.1006/jcis.1996.0030spa
dc.relation.referencesRegelink, I. C., Weng, L., Lair, G. J., & Comans, R. N. J. (2015). Adsorption of phosphate and organic matter on metal (hydr)oxides in arable and forest soil: A mechanistic modelling study. European Journal of Soil Science, 66(5), 867-875. doi:10.1111/ejss.12285spa
dc.relation.referencesScott, A. P., & Radom, L. (1996). Harmonic vibrational frequencies: An evaluation of hartree-fock, møller-plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors.Journal of Physical Chemistry, 100(41), 16502-16513. doi:10.1021/jp960976rspa
dc.relation.referencesSengupta, S., & Pandit, A. (2011). Selective removal of phosphorus from wastewater combined with its recovery as a solid-phase fertilizer. Water Research, 45(11), 3318-3330. doi:10.1016/j.watres.2011.03.044spa
dc.relation.referencesSherman, D. M., & Randall, S. R. (2003). Surface complexation of arsenic(V) to iron(III) (hydr)oxides: Structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochimica Et Cosmochimica Acta, 67(22), 4223-4230. doi:10.1016/S0016-7037(03)00237-0spa
dc.relation.referencesShin, E. W., Han, J. S., Jang, M., Min, S. -., Park, J. K., & Rowell, R. M. (2004). Phosphate adsorption on aluminum-impregnated mesoporous silicates: Surface structure and behavior of adsorbents.Environmental Science and Technology, 38(3), 912-917. doi:10.1021/es030488espa
dc.relation.referencesSuzuki, T. M., Bomani, J. O., Matsunaga, H., & Yokoyama, T. (2000). Preparation of porous resin loaded with crystalline hydrous zirconium oxide and its application to the removal of arsenic. Reactive and Functional Polymers, 43(1), 165-172. doi:10.1016/S1381-5148(99)00038-3spa
dc.relation.referencesTanada, S., Kabayama, M., Kawasaki, N., Sakiyama, T., Nakamura, T., Araki, M., & Tamura, T. (2003). Removal of phosphate by aluminum oxide hydroxide. Journal of Colloid and Interface Science, 257(1), 135-140. doi:10.1016/S0021-9797(02)00008-5spa
dc.relation.referencesTejedor-Tejedor, M. I., & Anderson, M. A. (1990). Protonation of phosphate on the surface of goethite as studied by CIR-FTIR and electrophoretic mobility. Langmuir, 6(3), 602-611. doi:10.1021/la00093a015spa
dc.relation.referencesVan Riemsdijk, W., & Lyklema, J. (1980). Reaction of phosphate with gibbsite (AI(OH)3) beyond the adsorption maximum. Journal of Colloid and Interface Science, 76(1), 55-66. doi:10.1016/0021-9797(80)90270-2spa
dc.relation.referencesWu, R. S. S., Lam, K. H., Lee, J. M. N., & Lau, T. C. (2007). Removal of phosphate from water by a highly selective la(III)-chelex resin. Chemosphere, 69(2), 289-294. doi:10.1016/j.chemosphere.2007.04.022spa
dc.relation.referencesXu, Y. -., Ohki, A., & Maeda, S. (2000). Removal of arsenate, phosphate, and fluoride ions by aluminium-loaded shirasu-zeolite. Toxicological and Environmental Chemistry, 76(1-2), 111-124. doi:10.1080/02772240009358921spa
dc.relation.referencesYang, X., Wang, D., Sun, Z., & Tang, H. (2007). Adsorption of phosphate at the aluminum (hydr)oxides-water interface: Role of the surface acid-base properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 297(1-3), 84-90. doi:10.1016/j.colsurfa.2006.10.028spa
dc.relation.referencesZhao, D., & Sengupta, A. K. (1998). Ultimate removal of phosphate from wastewater using a new class of polymeric ion exchangers. Water Research, 32(5), 1613-1625. doi:10.1016/S0043-1354(97)00371-0spa
dc.relation.referencesZhu, X., & Jyo, A. (2005). Column-mode phosphate removal by a novel highly selective adsorbent. Water Research, 39(11), 2301-2308. doi:10.1016/j.watres.2005.04.033spa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem