Show simple item record

dc.creatorAzhmyakov V.spa
dc.creatorVelez C.M.spa
dc.date.accessioned2017-12-19T19:36:52Z
dc.date.available2017-12-19T19:36:52Z
dc.date.created2017
dc.identifier.isbn9781536109924; 9781536109795spa
dc.identifier.urihttp://hdl.handle.net/11407/4381
dc.description.abstractThis chapter studies a singular case of Optimal Control Problems(OCPs) governed by a class of switched control systems. We proposea new mathematical formalism for this type of switched dynamic systemsand study OCPs with a quadratic cost functionals. The original sophisticatedoptimization problem is next replaced by an auxiliary "weaklyrelaxed" OCP. Our main result includes a formal proof of the local convexityproperty of the obtained auxiliary OCP. The convex structure ofthe OCP implies a possibility to apply a variety of powerful and relativelysimple optimization schemes to the sophisticated singular OCP involvingswitched dynamics. The conceptual numerical approach we finallydevelop includes an optimal switching times selection ("timing") and asimultaneous optimal switched modes sequence scheduling ("sequencing"). © 2017 Nova Science Publishers, Inc. All rights reserved.eng
dc.language.isoengspa
dc.publisherNova Science Publishers, Inc.spa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85020138152&partnerID=40&md5=70ac329a297f65c5da5a77ebe1b215b4spa
dc.sourceScopusspa
dc.sourcereponame:Repositorio Institucionalspa
dc.sourceinstname:Universidad de Medellínspa
dc.titleThe singular optimal control of switched systemsspa
dc.typeBook Chapterspa
dc.typeinfo:eu-repo/semantics/publishedVersionspa
dc.typeinfo:eu-repo/semantics/bookPartspa
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccessspa
dc.contributor.affiliationAzhmyakov, V., Department of Basic Sciences, Universidad de Medellin, Medellin, Colombiaspa
dc.contributor.affiliationVelez, C.M., Department of Mathematical Science, Univeridad EAFIT, Medellin, Colombiaspa
dc.subject.keywordOptimal controleng
dc.subject.keywordSingularitieseng
dc.subject.keywordSwitched dynamic systemseng
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.abstractThis chapter studies a singular case of Optimal Control Problems(OCPs) governed by a class of switched control systems. We proposea new mathematical formalism for this type of switched dynamic systemsand study OCPs with a quadratic cost functionals. The original sophisticatedoptimization problem is next replaced by an auxiliary "weaklyrelaxed" OCP. Our main result includes a formal proof of the local convexityproperty of the obtained auxiliary OCP. The convex structure ofthe OCP implies a possibility to apply a variety of powerful and relativelysimple optimization schemes to the sophisticated singular OCP involvingswitched dynamics. The conceptual numerical approach we finallydevelop includes an optimal switching times selection ("timing") and asimultaneous optimal switched modes sequence scheduling ("sequencing"). © 2017 Nova Science Publishers, Inc. All rights reserved.eng
dc.source.bibliographicCitationArmijo, L. (1966). Minimization of functions having lipschitz continuous first partial derivatives. Pacific Journal of Mathematics, 16(1), 1-3.spa
dc.source.bibliographicCitationAtkinson, K., & Han, W. (2001). Theoretical Numerical Analysis.spa
dc.source.bibliographicCitationAxelsson, H., Wardi, Y., Egerstedt, M., & Verriest, E. I. (2008). Gradient descent approach to optimal mode scheduling in hybrid dynamical systems. Journal of Optimization Theory and Applications, 136(2), 167-186. doi:10.1007/s10957-007-9305-yspa
dc.source.bibliographicCitationAzhmyakov, V., Basin, M., & Reincke-Collon, C. (2014). Optimal LQ-type switched control design for a class of linear systems with piecewise constant inputs. Paper presented at the IFAC Proceedings Volumes (IFAC-PapersOnline), , 19 6976-6981.spa
dc.source.bibliographicCitationAzhmyakov, V., Basin, M. V., & Raisch, J. (2012). A proximal point based approach to optimal control of affine switched systems. Discrete Event Dynamic Systems: Theory and Applications, 22(1), 61-81. doi:10.1007/s10626-011-0109-8spa
dc.source.bibliographicCitationAzhmyakov, V., Boltyanski, V. G., & Poznyak, A. (2008). Optimal control of impulsive hybrid systems. Nonlinear Analysis: Hybrid Systems, 2(4), 1089-1097. doi:10.1016/j.nahs.2008.09.003spa
dc.source.bibliographicCitationAzhmyakov, V., Cabrera, J., & Poznyak, A. (0000). Optimal fixed - levels control for non - linear systems with quadratic cost functionals. Optimal Control Applications and Methods.spa
dc.source.bibliographicCitationAzhmyakov, V., Egerstedt, M., Fridman, L., & Poznyak, A. (2009). Continuity properties of nonlinear affine control systems: Applications to hybrid and sliding mode dynamics. Paper presented at the IFAC Proceedings Volumes (IFAC-PapersOnline), 3(PART 1) 204-209.spa
dc.source.bibliographicCitationAzhmyakov, V., & Juarez, R. (2015). On the projected gradient method for switched - mode systems optimization. In: Proceedings of the 5th IFAC Conference on Analysis and Design of Hybrid Systems.spa
dc.source.bibliographicCitationAzhmyakov, V., & Schmidt, W. (2006). Approximations of relaxed optimal control problems. Journal of Optimization Theory and Applications, 130(1), 61-77. doi:10.1007/s10957-006-9085-9spa
dc.source.bibliographicCitationBello Cruz, J. Y., & De Oliveira, C. W. (2014). On Weak and Strong Convergence of the Projected Gradient Method for Convex Optimization in Hilbert Spaces, 1-18.spa
dc.source.bibliographicCitationBenoist, J., & Hiriart-Urruty, J. -. (1996). What is the subdifferential of the closed convex hull of a function? SIAM Journal on Mathematical Analysis, 27(6), 1661-1679. doi:10.1137/S0036141094265936spa
dc.source.bibliographicCitationBertsekas, D. P. (1995). Nonlinear Programming.spa
dc.source.bibliographicCitationBetts, J. T. (2001). Practical Methods for Optimal Control using Nonlinear Programming.spa
dc.source.bibliographicCitationBoltyanski, V., & Poznyak, A. (2012). The robust maximum principle. The Robust Maximum Principle.spa
dc.source.bibliographicCitationBonnard, B., & Chyba, M. (2003). Singular Trajectories and their Role in Control Theory.spa
dc.source.bibliographicCitationBurachik, R., Drummond, L. M., Iusem, A. N., & Svaiter, B. F. (1995). Full convergence of the steepest descent method with inexact line searches. Optimization, 32(2), 137-146. doi:10.1080/02331939508844042spa
dc.source.bibliographicCitationCesari, L. (1983). Optimization - Theory and Applications.spa
dc.source.bibliographicCitationClarke, F. H. (1983). Optimization and nonsmooth analysis. Optimization and Nonsmooth Analysis.spa
dc.source.bibliographicCitationClarke, F. H., Ledyaev, Y. S., Stern, R. J., & Wolenski, P. R. (1998). Nonsmooth Analysis and Control Theory.spa
dc.source.bibliographicCitationDmitruk, A. V. (1990). Maximum principle for a general optimal control problem with state and regular mixed constraints. Optimality of Control Dynamical Systems, 14, 26-42.spa
dc.source.bibliographicCitationDmitruk, A. V. (2009). On the development of pontryagin's maximum principle in the works of A.ya. dubovitskii and A.A. milyutin. Control and Cybernetics, 38(4), 923-957.spa
dc.source.bibliographicCitationEgerstedt, M., Wardi, Y., & Axelsson, H. (2006). Transition-time optimization for switched-mode dynamical systems. IEEE Transactions on Automatic Control, 51(1), 110-115. doi:10.1109/TAC.2005.861711spa
dc.source.bibliographicCitationFattorini, H. O. (1999). Infinite Dimensional Optimization and Control Theoryspa
dc.source.bibliographicCitationGill, P. E., Murray, W., & Wright, M. H. (1981). Practical Optimizationspa
dc.source.bibliographicCitationGoldstein, A. A. (1964). Convex programming in hilbert space. Bulletin of the American Mathematical Society, 70(5), 709-710. doi:10.1090/S0002-9904-1964-11178-2spa
dc.source.bibliographicCitationHale, J. K. (1969). Ordinary Differential Equations.spa
dc.source.bibliographicCitationHale, M., & Wardi, Y. (2014). Mode scheduling under dwell time constraints in switched-mode systems. Paper presented at the Proceedings of the American Control Conference, 3954-3959. doi:10.1109/ACC.2014.6858763spa
dc.source.bibliographicCitationHiriart-Urruty, J. -., & Lemaréchal, C. (1993). Convex Analysis and Minimization Algorithms.spa
dc.source.bibliographicCitationIoffe, A. D., & Tihomirov, V. M. (1979). Theory of Extremal Problems.spa
dc.source.bibliographicCitationLi, D. (1995). Zero duality gap for a class of nonconvex optimization problems. Journal of Optimization Theory and Applications, 85(2), 309-324. doi:10.1007/BF02192229spa
dc.source.bibliographicCitationLincoln, B., & Rantzer, A. (2001). Optimizing linear system switching. Paper presented at the Proceedings of the IEEE Conference on Decision and Control, 3 2063-2068.spa
dc.source.bibliographicCitationMitsos, A., Chachuat, B., & Barton, P. I. (2009). Mccormick-based relaxations of algorithms. SIAM Journal on Optimization, 20(2), 573-601. doi:10.1137/080717341spa
dc.source.bibliographicCitationPolak, E. (1997). Optimization, springer-verlag.spa
dc.source.bibliographicCitationRockafellar, R. T., & Wets, R. J. -. (1998). Variational analysis. Grundlehren Math.Wiss., 317.spa
dc.source.bibliographicCitationRoubíček, T. (1997). Relaxation in Optimization Theory and Variational Calculusspa
dc.source.bibliographicCitationScott, J. K., & Barton, P. I. (2013). Convex and concave relaxations for the parametric solutions of semi-explicit index-one differential-algebraic equations. Journal of Optimization Theory and Applications, 156(3), 617-649. doi:10.1007/s10957-012-0149-8spa
dc.source.bibliographicCitationTeo, K. L., Goh, C. J., & Wong, K. H. (1991). A Unified Computational Approach to Optimal Control Problems.spa
dc.source.bibliographicCitationWardi, Y. (2012). Optimal control of switched-mode dynamical systems. Paper presented at the IFAC Proceedings Volumes (IFAC-PapersOnline), 4-8.spa
dc.source.bibliographicCitationWardi, Y., Egerstedt, M., & Hale, M. (0000). Switched-mode systems: Gradient-descent algorithms with armijo step sizes. Discrete Event Dynamic Systems, to Appear.spa
dc.source.bibliographicCitationWardi, Y., Egerstedt, M., & Twu, P. (2012). A controlled-precision algorithm for mode-switching optimization. Paper presented at the Proceedings of the IEEE Conference on Decision and Control, 713-718. doi:10.1109/CDC.2012.6426621spa
dc.creator.affiliationDepartment of Basic Sciences, Universidad de Medellin, Medellin, Colombiaspa
dc.creator.affiliationDepartment of Mathematical Science, Univeridad EAFIT, Medellin, Colombiaspa
dc.relation.ispartofesAdvances in Communications and Media Researchspa
dc.relation.ispartofesAdvances in Communications and Media Research Volume 12, 1 January 2017, Pages 127-143spa


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record